Our research if focussed on fundamental light-matter interactions at a spatio-temporally confined conditions and its development towards advanced ultrafast laser 3D nanolithography (also known as Two-Photon Polymerization or Multi-Photon Lithography – 2PP / MPL).
The femtosecond laser direct writing (LDW) approach enables 3D printing with down to 100 nm feature dimensions of true free-form structures reaching dimensions up to mm in their overall sizes. It is compatible with diverse materials ranging from plant derived renewable resins to high technical performance offering hybrid polymers as well as inorganics - glasses, ceramics, and crystalline substances.
Such additive manufacturing technique allows production of various high-resilient and heavy-duty components applicable for micro-optics, nano-photonics as well as biomedicine.
Scientific research topics:
- Photophysical mechanisms influencing the nanoprocessing of materials with ultrafast lasers;
- Optical micro-/nano-printing of functional prototypes;
- Creation and characterization of a new generation integrated nanophotonic, microoptical, miomedical and microfluidic components;
- Development of additive and subtractive 3D laser mesoscale fabrication technologies (monolithic structures with nano- and macro-architecture out of different materials);
- Research of alternative optical 3D printing and soft lithography techniques and their applications.
Group members
Prof. Mangirdas Malinauskas Chief Researcher / Professor Saulėtekio Ave. 10, 513 office. CV: CV-MM_230425.pdf A list of publications from the last five years: Publication.pdf |
Arūnas Čiburys Lecturer / Engineer Saulėtekio Ave. 10, 512 office.
|
Dr. Dimitra Ladika Visiting Researcher Saulėtekio Ave. 10, 505 office.
CV: CV2024-VU.pdf A list of publications available at: |
Artūr Harnik Junior Research Fellow PhD candidate "Engineering and laser 3D microstructuration of optically active materials" Saulėtekio Ave. 10, 506 room |
Ioanna Angeliki Petsi Junior Laboratory Assistant Bachelor student "Integration of Low-Density Foam Microstructures in Rigid Holders for Laser Targets" Saulėtekio Ave. 10, 506 room
|
Saulė Petrauskaitė Junior Laboratory Assistant Bachelor student "Selection and optimisation of acrylic resins for printing of low-density ordered 3D structures" Saulėtekio Ave. 10, 506 room
|
Dominykas Dapšys Master student "Development of a system for characterizing the optical properties of 3D microstructures" Saulėtekio Ave. 10, 506 office.
|
Mindaugas Česnulis Master student "Fabrication and characterization of improved-transparency 3D micro-optical components" Saulėtekio Ave. 10, 506 room
|
Robertas Virkėtis Intern Bachelor student "Synthesis of luminescent precursor materials and investigation of their applicability in laser lithography" Saulėtekio Ave. 10, 506 room robertas.virketis@chgf.vu.lt |
-
Students: Austėja Kvedaraitė (Master's degree).
-
On leave: Dr. Sima (Rekštytė) Paipulienė (Researcher / Assistant)
- Former members: Prof. Roaldas Gadonas, Dr. Vytautas Purlys, Dr. Darius Gailevičius.
-
Defended dissertations: Dr. Edvinas Skliutas (2023), Dr. Linas Jonušauskas (2021), Dr. Titas Tičkūnas (2020), Dr. Albertas Žukauskas (2015), .
Laboratories
Laser nanophotonics laboratory 510
|
||
Multi-beam "NanoFactory"laser 3D nanolithography system "FLINT" (Light Conversion): τ = <100 fs, P = >4 W (@ 1035 nm), λ = 1035 ir 517 nm, f = 76 MHz. XYZ positioning stages (Areotech): ν = 350 @XY, 200 @Z mm/s, R = 1 @XY, 2 @Z nm, X/Y/Z = 110/110/60 mm. Galvano-scanners (Areotech): Accuracy = 50 μrad Beam shaping with SLM ("X15223 - 16", Hamamatsu) Laser Nanofactory is equipped with universal vacuum sample holder with computer-controlled, position synchronized illumination for transparent samples. |
Modified wide working field "FemtoLab" laser 3D nanolithography system "Pharos" (Light Conversion): τ = 300 fs, P = 6 W, λ = 1030 nm, f = 1 - 200 kHz, Ep = 0.4 mJ. "ALS130" (Areotech): ν = 500 mm/s, R = 10 nm, X/Y/Z = 110/110/60 mm. "hurryScan II 10" (ScanLab): ν = 3 mm/s, τ = 0.35/1.70 ms (1/10 % of full scale) |
|
|
|
|
Custom made tunable wavelenght laser 3D nanolithography system "Pharos" + "Orpheus" (Light Conversion): τ = 300 fs, P = 6W, λ = 300 - 2700 nm, f = 1 - 1000 kHz, Ep = 0.4mJ. P-563.3CD PIMars (Physik Instrumente): R = 0.5 nm, X/Y/Z = 300/300/300 μm. Beam shaping with SLM ("X10468-03", Hamamatsu) |
Olympus IX73 inverted motorized microscope |
Materials used for LDW:
- SZ 2080TM and otherOrmosils (Hybrid polymers);
- ORMOCER's (OrmoComp, OrmoClear ir t.t.);
- SU-8;
- AKRE (SR368 and etc.);
- PEG-DA (258 and 700);
- PDMS (Sylgard 184) (Elastomer);
- AESO and other plantbased, biorenewable resins (developed by KTU);
- PLA, PCL, PBS (custom made and biodegradable);
- PETA;
- NIL;
- UV PDMS;
- AZ dervos;
- Photoinitiators:
- TPO (PL ir GENOCURE);
- IRG 369;
- Thioxanthen-9-one;
- EMK (4,4′-Bis(diethylamino)benzophenone);
-
BDK (2,2- dimethoxy-2- phenylacetophenone).
Materials preparation room 508
|
||
Critical Point Dryer - CPD "EMS Q 850" |
"Quorum" "150R S" Sputter Coating System |
|
Soxhlet extractor |
"Labinco" magnetic stirrer |
"KW-4A" Spin Coater |
"EMAG" "EMMI 20HC" Ultrasonic bath | Ovens with Heat Distribution in Vacuum "VacuCell" | Scales "Sartorius" "AX124" ir "AND" "GF-300" |
Publications
Articles
2024
M. Stavrou, D. Ladika, E. Skliutas, V. Jukna, D. Gray, M. Farsari, S. Juodkazis, M. Malinauskas, under consideration (2024).
I. Dumbryte, M. Androulidaki, D. Narbutis, E. Skliutas, S. Juodkazis, E. Jasiuniene, M. Malinauskas, Novel insights into the tooth structural integrity at the microcrack site: combining X-ray tomography and photoluminescence, submitted (2024).
E. Skliutas, G. Merkininkaitė, S. Maruo, W. Zhang, W. Chen, W. Deng, J. Greer, G. von Freymann, M. Malinauskas, Multiphoton 3D Lithography, Nat. Rev. Meth. Primers, in press (2024). [D1, IF – 50.1]
A. Harnik, G. Merkininkaitė, D. Ladika, A. Čiburys, E. Kabouraki, S. Šakirzanovas, M. Farsari, M. Malinauskas, Laser 3D micro-/nano-structurization of luminescent materials, under review (2024).
A. Gineika, K. Baltakys, A. Navaruckienė, J. Ostrauskaitė, E. Skliutas, M. Malinauskas, The application of synthetic wollastonite in digital light processing 3D printing, Ceram. Int. (2024); https://doi.org/10.1016/j.ceramint.2024.09.161. [Q1, IF – 5.1]
G. Skliutė, G. Staponkutė, E. Skliutas, M. Malinauskas, R. Navakauskienė, Molecular changes in endometrium origin stromal cells during initiation of cardiomyogenic differentiation induced with Decitabine, Angiotensin II and TGF- 1, Sci. Rep. 14, 16966 (2024); https://doi.org/10.1038/s41598-024-68108-0. [Q1, IF – 3.8]
D. Ladika, A. Butkus, V. Melissinaki, E. Skliutas, E. Kabouraki, S. Juodkazis, M. Farsari, M. Malinauskas, X-photon 3D lithography by fs-oscillators: wavelength-independent and photoinitiator-free, Light Adv. Manuf., published ahead (2024) https://doi.org/10.37188/lam.2024.048. [D1, IF – 10.9]
M. Ryu, S. Varapnickas, D. Gailevicius, D. Paipulas, E. P. Vilardell, Z. Khajehsaeidimahabadi,S. Juodkazis, J. Morikawa, M. Malinauskas, Interferometric microscalemeasurement of refractive index at VIS and IR wavelengths, SciPost Physics Core 7, 059 (2024); https://doi.org/10.21468/SciPostPhysCore.7.3.059
2023
I. Dumbryte, D. Narbutis, M. Androulidaki, A. Vailionis, S. Juodkazis, M. Malinauskas, Teeth Microcracks Research: Towards Multi-Modal Imaging, Bioengineering 10(12), 1354 (2023); https://doi.org/10.3390/bioengineering10121354
G. Merkininkaite, D. Gailevicius, L. Staisiunas, E. Ezerskyte, R. Vargalis, M. Malinauskas, S. Sakirzanovas, Additive Manufacturing of Extremely Hard SiOC, SiC, and Si3N4 Ceramic 3D Micro-Structures, Adv. Eng. Mater. 25(17), 2300639 (2023); https://doi.org/10.1002/adem.202300639.
E. Skliutas, D. Samsonas, A. Čiburys, L. Kontenis, D. Gailevičius, J. Beržins, D. Narbutis, V. Jukna, M. Vengris, S. Juodkazis, M. Malinauskas, X-photon laser direct write 3D nanolithography, Virtual. Phys. Prototyp. 18(1), e2228324 (2023); https://doi.org/10.1080/17452759.2023.2228324.
D. Gonzalez-Hernandez, S. Varapnickas, A. Bertoncini, C. Liberale, M. Malinauskas, Micro-Optics 3D Printed via Multi-Photon Laser Lithography, Adv. Opt. Matter. 11(1), 2201701 (2023); doi: https://doi.org/10.1002/adom.202370001
D. Samsonas, E. Skliutas, A. Čiburys, L. Kontenis, D. Gailevivčius, J. Berzins, D. Narbutis, V. Jukna, M. Vengris, S. Juodkazis, M. Malinauskas, 3D nanopolymerization and damage thresholds dependence on laser wavelength and pulse duration, Nanophotonics 12(8), 1537-1548 (2022). https://doi.org/10.1515/nanoph-2022-0629
S. Grauzeliene, B. Kazlauskaite, E. Skliutas, M. Malinauskas, J, Ostrauskaite, Photocuring and digital light processing 3D printing of vitrimer composed of 2-hydroxy-2-phenoxypropyl acrylate and acrylated epoxidized soybean oil, Exp. Pol. Lett. 17(1), 54-68 (2023); doi: 10.3144/expresspolymlett.2023.5.
2022
I. Dumbrytė, D. Narbutis, A. Vailionis, S, Juodkazis, M. Malinauskas, Revelation of microcracks as tooth structural element by X-ray tomography and machine learning, Sci. Rep. 12, 22489 (2022); https://doi.org/10.1038/s41598-022-27062-5. [Q1, IF - 4.996].
V. Sereikaite, A. Navaruckiene, J. Jaras, E. Skliutas, D. Ladika, D. Gray, M. Malinauskas, V. Talacka, J. Ostrauskaite, Functionalized Soybean Oil- and Vanillin-Based Dual Cure Photopolymerizable System for Light-Based 3D Structuring, Polymers, 14, 5361 (2022); https://doi.org/10.3390/polym14245361. [Q1, IF - 4.967]
A. Butkus, E. Skliutas, D. Gaileviius, M. Malinauskas, Femtosecond-Laser Direct Writing 3D Micro-/Nano- Lithography Using VIS-Light Oscillator, J. Centr. South Univ., 29, 3270-3276 (2022); doi: 10.1007/s11771-022-5153-z.
J. Jaras, A. Navaruckiene, E. Skliutas, J. Jersovaite, M. Malinauskas and J. Ostrauskaite, Thermo-Responsive Shape Memory Vanillin-Based Photopolymers for Microtransfer Molding, Polymers, 14(12), 2460 (2022), https://doi.org/10.3390/polym14122460.
G. Merkininkaitė, E. Aleksandravičius, M. Malinauskas, D. Gailevičius and S. Šakirzanovas, Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures. Opto-Electron Adv 5, 210077 (2022), doi: 10.29026/oea.2022.210077.
2021
E. Skliutas, M. Lebedevaitė, E. Kabouraki, T. Baldacchini, J. Ostrauskaite, M. Vamvakaki, M. Farsari, S. Juodkazis and M. Malinauskas, Polymerization mechanisms initiated by spatio-temporally confined light, Nanophotonics, 10(4), 1211–1242 (2021), https://doi.org/10.1515/nanoph-2020-0551.
S. Varapnickas, S. C. Thodika, F. Moroté, S. Juodkazis, M. Malinauskas, and E. Brasselet, Birefringent optical retarders from laser 3D-printed dielectric metasurfaces, Appl. Phys. Lett., 118(21), 219903 (2021), https://doi.org/10.1063/5.0054884.
D. Gonzalez-Hernandez, S. Varapnickas, G. Merkininkaitė, A. Čiburys, D. Gailevičius, S. Šakirzanovas, S. Juodkazis and M. Malinauskas, Laser 3D Printing of Inorganic Free-Form Micro-Optics, Photonics, 8(12), 577 (2021), https://doi.org/10.3390/photonics8120577
I. Dumbrytė and M. Malinauskas, In vivo examination of enamel microcracks after orthodontic debonding: Is there a need for detailed analysis?, Am. J. Orthod. Dentofac. Orthop., 159(2), e103-e111,(2021), https://doi.org/10.1063/5.0046978.
I. Dumbrytė, A. Vailionis, E. Skliutas, S. Juodkazis and M. Malinauskas, Three-dimensional non-destructive visualization of teeth enamel microcracks using X-ray micro-computed tomography, Sci. Rep., 11(1), (2021), https://doi.org/10.1038/s41598-021-94303-4.
S. Grauželienė, A. Navaruckienė, E. Skliutas, M. Malinauskas, A. Serra and J. Ostrauskaitė, Vegetable Oil-Based Thiol-Ene/Thiol-Epoxy Resins for Laser Direct Writing 3D Micro-/Nano-Lithography, Polymers, 13(6), 872 (2021), https://doi.org/10.3390/polym13060872.
V. Rutkūnas, A. Gedrimienė, R. Jacobs, and M. Malinauskas, Comparison of conventional and digits workflows for implant-supported screw-retained zirconia FPD bars: Fit and cement gap evaluation using SEM analysis, Int. J. Oral Implantol., 14(2), 199–210 (2021).
S. Varapnickas, M. Malinauskas, PROCESSES OF LASER DIRECT WRITING 3D NANOLITHOGRAPHY, Handbook of Laser Micro- and Nano-Engineering, Springer, Cham, 1-31(2021). https://doi.org/10.1007/978-3-030-63647-0_32
2020
A. Butkutė, L. Čekanavičius, G. Rimšelis, D. Gailevičius, V. Mizeikis, A. Melninkaitis, T. Baldacchini, L. Jonušauskas, and M. Malinauskas, Optical damage thresholds of microstructures made by laser three-dimensional nanolithography, Opt. Lett., 45(4), 980 (2020), https://doi.org/10.1364/OL.389912.
D. Gailevičius, M. Ryu, R. Honda, S. Lundgaard, T. Suzuki, J. Maksimovic, J. Hu, D. P. Linklater, E. P. Ivanova, T. Katkus, V. Anand, M. Malinauskas, Y. Nishijima, S. H. Ng, K. Staliūnas, J. Morikawa, and S. Juodkazis, Tilted black-Si: similar to 0.45 form-birefringence from sub-wavelength needles, Opt. Express, 28(11), 16012–16026 (2020), https://doi.org/10.1364/OE.392646.
I. Gendvilienė, E. Simoliūnas, S. Rekštytė, M. Malinauskas, L. Zaleckas, D. Jegelevičius, V. Bukelskienė, and V. Rutkunas, Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds, J. Mech. Behav. Biomed. Mater., 140, (2020), https://doi.org/10.1016/j.jmbbm.2020.103616.
G. Grigalevičiūtė, D. Baltriukienė, V. Bukelskienė and M. Malinauskas, Biocompatibility Evaluation and Enhancement of Elastomeric Coatings Made Using Table-Top Optical 3D Printer, Coatings, 10(3), (2020), https://doi.org/10.3390/coatings10030254.
T. Moein, D. Gailevičius, T. Katkus, S. H. Ng, S. Lundgaard, D. J. Moss, H. Kurt, V. Mizeikis, K. Staliūnas, M. Malinauskas and S. Juodkazis, Optically-Thin Broadband Graphene-Membrane Photodetector, Nanomaterials, 10(3), (2020), https://doi.org/10.3390/nano10030407.
A. Navaruckienė, E. Skliutas, S. Kasetaitė, S. Rekštytė, V. Raudonienė, D. Bridžiuvienė, M. Malinauskas and J. Ostrauskaite, Vanillin Acrylate-Based Resins for Optical 3D Printing, Polymers, 12(2), (2020), https://doi.org/10.3390/polym12020397.
E. Skliutas, M. Lebedevaitė, S. Kasetaitė, S. Rekštytė, S. Lileikis, J. Ostrauskaitė and M. Malinauskas, A Bio-Based Resin for a Multi-Scale Optical 3D Printing, Sci. Rep., 10(1), (2020), https://doi.org/10.1038/s41598-020-66618-1.
2019
M. Alksne, E. Simoliunas, M. Kalvaityte, E. Skliutas, I. Rinkunaite, I. Gendviliene, D. Baltriukiene, V. Rutkunas, V. Bukelskiene, The effect of larger than cell diameter polylactic acid surface patterns on osteogenic differentiation of rat dental pulp stem cells, J. Biomed. Mater. Res. A, 107(1), 174-186 (2019), https://doi.org/10.1002/jbm.a.36547.
D. Gailevicius, V. Padolskyte, L. Mikoliunaite, S. Sakirzanovas, S. Juodkazis and M. Malinauskas, Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution, Nanoscale Horiz., 4(3), 647–651 (2019), https://doi.org/10.1039/c8nh00293b.
L. Jonusauskas, D. Gailevicius, S. Rekstyte, T. Baldacchini, S. Juodkazis and M. Malinauskas, Mesoscale laser 3D printing, Opt. Express, 27(11), 15205–15221 (2019), https://doi.org/10.1364/OE.27.015205.
M. Lebedevaite, J. Ostrauskaite, E. Skliutas and M. Malinauskas, Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets, Polymers, 11(1), (2019), https://doi.org/10.3390/polym11010116.
J. Maciulaitis, S. Rekštytė, M. Bratchikov, R. Gudas, M. Malinauskas, A. Pockevicius, A. Usas, A. Rimkunas, V. Jankauskaite, V. Grigaliunas amd R. Maciulaitis, Customization of direct laser lithography-based 3D scaffolds for optimized in vivo outcome, Appl. Surf. Sci., 487, 692–702 (2019), https://doi.org/10.1016/j.apsusc.2019.05.065.
G. Miezinyte, J. Ostrauskaite, E. Rainosalo, E. Skliutas and M. Malinauskas, Photoresins based on acrylated epoxidized soybean oil and benzenedithiols for optical 3D printing, Rapid Prototyp. J., 25(2), 378–387 (2019), https://doi.org/10.1108/RPJ-04-2018-0101.
B. Sanchez-Padilla, L. Jonusauskas, M. Malinauskas, R. Wunenburger and E. Brasselet, Direct Mechanical Detection and Measurement of Wave-Matter Orbital Angular Momentum Transfer by Nondissipative Vortex Mode Conversion, Phys. Rev. Lett., 123(24), (2019), https://doi.org/10.1103/PhysRevLett.123.244301.
2018
L. Cekanavicius, L. Jonusauskas, A. Butkute and M. Malinauskas, Methods and challenges in laser-induced damage threshold evaluation of volumetric photopolymerized micro-structures, In Fournier, C and Georges, MP and Popescu, G (Ed.), Proc. SPIE, 10677, (2018), https://doi.org/10.1117/12.2307595.
I. Dumbryte, L. Vebriene, L. Linkeviciene and M. Malinauskas, Enamel microcracks in the form of tooth damage during orthodontic debonding: a systematic review and meta-analysis of in vitro studies, Eur. J. Orthod., 40(6), 636–648 (2018), https://doi.org/10.1093/ejo/cjx102.
L. Jonusauskas, S. Juodkazis and Malinauskas, Optical 3D printing: bridging the gaps in the mesoscale, J. Opt., 20(5), (2018), https://doi.org/10.1088/2040-8986/aab3fe.
S. Pashneh-Tala, R. Owen, H. Bahmaee, S. Rekstyte, M. Malinauskas and F. Claeyssens, Synthesis, Characterization and 3D Micro-Structuring via 2-Photon Polymerization of Poly(glycerol sebacate)-Methacrylate-An Elastomeric Degradable Polymer, Front. Phys., 6, (2018), https://doi.org/10.3389/fphy.2018.00041.
M. Ryu, D. Linklater, W. Hart, A. Balcytis, E. Skliutas, M. Malinauskas, D. Appadoo, Y.-R. E. Tan, E. P. Ivanova, J. Morikaw and S. Juodkazis, 3D printed polarizing grids for IR-THz synchrotron radiation, J. Opt, 20(3), (2018), https://doi.org/10.1088/2040-8986/aaa6fb.
E. Skliutas, S. Kasetaite, L. Jonusauskas, J. Ostrauskaite and M. Malinauskas, Photosensitive naturally derived resins toward optical 3-D printing, Opt. Eng., 57(4), (2018), https://doi.org/10.1117/1.OE.57.4.041412.
2017
I. Dumbryte, L. Linkeviciene, T. Linkevicius and M. Malinauskas, Does orthodontic debonding lead to tooth sensitivity? Comparison of teeth with and without visible enamel microcracks, Am. J. Orthod. Dentofac. Orthop., 151(2), 284–291 (2017), https://doi.org/10.1016/j.ajodo.2016.06.036.
I. Dumbryte, L. Linkeviciene, T. Linkevicius and M. Malinauskas, Enamel microcracks in terms of orthodontic treatment: A novel method for their detection and evaluation, Dent. Mater. J., 36(4), 438–446 (2017), https://doi.org/10.4012/dmj.2016-264.
L. Jonusauskas, D. Gailevicius, L. Mikoliunaite, D. Sakalauskas, S. Sakirzanovas, S. Juodkazis and M. Malinauskas, Optically Clear and Resilient Free-Form mu-Optics 3D-Printed via Ultrafast Laser Lithography, Materials, 10(1), (2017), https://doi.org/10.3390/ma10010012.
L. Jonusauskas, S. Rekstyte, R. Buividas, S. Butkus, R. Gadonas, S. Juodkazis and Malinauskas, Hybrid subtractive-additive-welding microfabrication for lab-on-chip applications via single amplified femtosecond laser source, Opt. Eng., 56(9), (2017), https://doi.org/10.1117/1.OE.56.9.094108.
S. Rekstyte, D. Paipulas, M. Malinauskas and V. Mizeikis, Microactuation and sensing using reversible deformations of laser-written polymeric structures, Nanotechnology, 28(12), (2017), https://doi.org/10.1088/1361-6528/aa5d4d.
T. Tickunas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekstyte, M. Malinauskas, D. Paipulas, Y. Bellouard and V. Sirutkaitis, Combination of additive and subtractive laser 3D microprocessing in hybrid glass/polymer microsystems for chemical sensing applications, Opt. Express, 25(21), 26280–26288 (2017), https://doi.org/10.1364/OE.25.026280.
2016
A. Balcytis, D. Hakobyan, M. Gabalis, A. Zukauskas, D. Urbonas, M. Malinauskas, R. Petruskevicius, E. Brasselet and S. Juodkazis, Hybrid curved nano-structured micro-optical elements, Opt. Express, 24(15), 16988–16998 (2016), https://doi.org/10.1364/OE.24.016988.
I. Dumbryte, T. Jonavicius, L. Linkeviciene, T. Linkevicius, V. Peciuliene and M. Malinauskas, The prognostic value of visually assessing enamel microcracks: Do debonding and adhesive removal contribute to their increase?, Angle Orthod., 86(3), 437–447 (2016), https://doi.org/10.2319/021115-93.1.
E. Garskaite, L. Alinauskas, M. Drienovsky, J. Krajcovic, R. Cicka, M. Palcut, L. Jonusauskas, M. Malinauskas, Z. Stankeviciute and A. Kareiva, Fabrication of a composite of nanocrystalline carbonated hydroxyapatite (cHAP) with polylactic acid (PLA) and its surface topographical structuring with direct laser writing (DLW), RSC Adv., 6(76), 72733–72743 (2016), https://doi.org/10.1039/c6ra11679e.
L. Jonusauskas, M. Lau, P. Gruber, B. Goekce, S. Barcikowski, M. Malinauskas and A. Ovsianikov, Plasmon assisted 3D microstructuring of gold nanoparticle-doped polymers, Nanotechnology, 27(15), (2016), https://doi.org/10.1088/0957-4484/27/15/154001.
J. Maciulaitis, S. Rekstyte, A. Usas, V. Jankauskaite, R. Gudas, M. Malinauskas and Maciulaitis, Characterization of tissue engineered cartilage products: Recent developments in advanced therapy, Pharmacol. Res., 113(B, SI), 823–832 (2016), https://doi.org/10.1016/j.phrs.2016.02.022.
M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas and S. Juodkazis, Ultrafast laser processing of materials: from science to industry, Light Sci. Appl., 5, (2016), https://doi.org/10.1038/lsa.2016.133.
S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly and S. Juodkazis, Nanoscale Precision of 3D Polymerization via Polarization Control, Adv. Opt. Mater., 4(8), 1209–1214 (2016), https://doi.org/10.1002/adom.201600155.
B. Sanchez-Padilla, A. Zukauskas, A. Aleksanyan, A. Balcytis, M. Malinauskas, S. Juodkazis and E. Brasselet, Wrinkled axicons: shaping light from cusps, Opt. Express, 24(21), 24075–24082 (2016), https://doi.org/10.1364/OE.24.024075.
A. Zukauskas, M. Malinauskas, E. Brasselet, S. Juodkazis, 3D MICRO-OPTICS VIA ULTRAFAST LASER WRITING: MINIATURIZATION, INTEGRATION, AND MULTIFUNCTIONALITIES, THREE-DIMENSIONAL MICROFABRICATION USING TWO-PHOTON POLYMERIZATION: FUNDAMENTALS, TECHNOLOGY, AND APPLICATIONS, (In Baldacchini, T (Ed.)), 268–292 (2016), https://doi.org/10.1016/B978-0-323-35321-2.00014-5.
A. Zukauskas, M. Malinauskas, G. Seniutinas and S. Juodkazis, MULTIPHOTON LITHOGRAPHY: TECHNIQUES, MATERIALS AND APPLICATIONS, Rapid Laser Optical Printing in 3D at a Nanoscale (In Stampfl, J and Liska, R and Ovsianikov, A (Ed.)), 3–23 (2016).
2015
I. Dumbryte, T. Jonavicius, L. Linkeviciene, T. Linkevicius, V. Peciuliene and M. Malinauskas, Enamel cracks evaluation - A method to predict tooth surface damage during the debonding, Dent. Mater. J., 34(6), 828–834 (2015), https://doi.org/10.4012/dmj.2015-085.
L. Jonusauskas, E. Skliutas, S. Butkus and M. Malinauskas, CUSTOM ON DEMAND 3D PRINTING OF FUNCTIONAL MICROSTRUCTURES, Lith. J. Phys., 55(3), 227–236 (2015).
J. Maciulaitis, M. Deveikyte, S. Rekstyte, M. Bratchikov, A. Darinskas, A. Simbelyte, G. Daunoras, A. Laurinaviciene, A. Laurinavicius, R. Gudas, M. Malinauskas and R. Maciulaitis, Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography, Biofabrication, 7(1), (2015), https://doi.org/10.1088/1758-5090/7/1/015015.
M. Malinauskas, L. Lukosevicius, S. Butkus and D. Paipulas, Femtosecond Pulse Light Filament-Assisted Microfabrication of Biodegradable Polylactic Acid (PLA) Material, J. Laser Micro Nanoeng., 10(2), 222–228 (2015),https://doi.org/10.2961/jlmn.2015.02.0021.
M. Malinauskas, E. Skliutas, L. Jonusauskas, D. Mizeras, A. Sesok and A. Piskarskas, QUANTUM OPTICS AND QUANTUM INFORMATION TRANSFER AND PROCESSING 2015, Tailoring bulk mechanical properties of 3D printed objects of polylactic acid varying internal micro-architecture. (In Banaszek, K and Silberhorn, C (Ed.)), 9505, (2015), https://doi.org/10.1117/12.2178515.
V. Rutkunas, V. Bukelskiene, V. Sabaliauskas, E. Balciunas, M. Malinauskas and D. Baltriukiene, Assessment of human gingival fibroblast interaction with dental implant abutment materials, J. Mater. Sci.: Mater. Med., 26(4), (2015), https://doi.org/10.1007/s10856-015-5481-8.
A. Zukauskas, G. Bataviciute, M. Sciuka, Z. Balevicius, A, Melninkaitis and M. Malinauskas, Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080), Opt. Mater., 39, 224–231 (2015), https://doi.org/10.1016/j.optmat.2014.11.031.
A. Zukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas and R. Gadonas, Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics, Laser Photonics Rev., 9(6), 706–712 (2015), https://doi.org/10.1002/lpor.201500170.
2014
V. Bukelskiene, E. Balciunas, M. Peciukaityte, J. Burinskij, R. Jarasiene, M. Malinauskas and Baltriukiene, Poly(dimethylsiloxane) scaffolds for tissue engineering: an in vitro study, J. Tissue Eng. Regen. Med., 8(1, SI), 322 (2014).
Y. C. Cheng, H. Zeng, J. Trull, C. Cojocaru, M. Malinauskas, T. Jukna, D. S. Wiersma and K. Staliunas, Beam focalization in reflection from flat dielectric subwavelength gratings, Opt. Lett., 39(20), 6086–6089 (2014), https://doi.org/10.1364/OL.39.006086
T. Jonavicius, S. Rekstyte and M. Malinauskas, MICROFABRICATION OF 3D METALLIC INTERCONNECTS VIA DIRECT LASER WRITING AND CHEMICAL METALLIZATION, Lith. J. Phys., 54(3), 162–169 (2014).
L. Jonusauskas, S. Rekstyte and M. Malinauskas, Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions, Opt. Eng., 53(12), (2014), https://doi.org/10.1117/1.OE.53.12.125102.
M. Malinauskas, S. Rekstyte, L. Lukosevicius, S. Butkus, E. Balciunas, M. Peciukaityte, D. Baltriukiene, V. Bukelskiene, A. Butkevicius, P. Kucevicius, V. Rutkunas and S. Juodkazis, 3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation, Micromachines, 5(4), 839–858 (2014), https://doi.org/10.3390/mi5040839.
M. Malinauskas, E. Stankevicius, A. Casselbrant, Angiotensin IV induced contractions in human jejunal wall musculature in vitro, Peptides, 59, 63–69 (2014), https://doi.org/10.1016/j.peptides.2014.07.008.
M. Peciukaityte, E. Balciunas, J. Burinskij, R. Jarasiene, M. Malinauskas, V. Bukelskiene and D. Baltriukiene, Investigation of progenitor cell interactions with 3D printed pla scaffolds for tissue engineering applications, J. Tissue Eng. Regen. Med., 8(1, SI), 337 (2014).
V. Purlys, L. Maigyte, D. Gailevicius, M. Peckus, M. Malinauskas, R. Gadonas and K. Staliunas, Spatial filtering by axisymmetric photonic microstructures, Opt. Lett., 39(4), 929–932 (2014), https://doi.org/10.1364/OL.39.000929.
S. Rekstyte, T. Jonavicius and M. Malinauskas, Direct laser writing of microstructures on optically opaque and reflective surfaces, Opt. Lasers Eng., 53, 90–97 (2014), https://doi.org/10.1016/j.optlaseng.2013.08.017.
S. Rekstyte, E. Kaziulionyte, E. Balciunas, D. Kaskelyte and M. Malinauskas, Direct Laser Fabrication of Composite Material 3D Microstructured Scaffolds, J. Laser Micro Nanoeng., 9(1), (2014), https://doi.org/10.2961/jlmn.2014.01.0006.
A. Zukauskas, G. Bataviciute, M. Sciuka, T. Jukna, A. Melninkaitis and M. Malinauskas, Characterization of photopolymers used in laser 3D micro/nanolithography by means of laser-induced damage threshold (LIDT), Opt. Mater. Express, 4(8), 1601–1616 (2014), https://doi.org/10.1364/OME.4.001601.
A. Zukauskas, V. Melissinaki, D. Kaskelyte, M. Farsari and M. Malinauskas, Improvement of the Fabrication Accuracy of Fiber Tip Microoptical Components via Mode Field Expansion, J. Laser Micro Nanoeng., 9(1), 68–72 (2014), https://doi.org/10.2961/jlmn.2014.01.0014.
2013
R. Buividas, S. Rekstyte, M. Malinauskas and S. Juodkazis, Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses, Opt. Mater. Express, 3(10), 1674–1686 (2013), https://doi.org/10.1364/OME.3.001674.
P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas and M. Malinauskas, Laser 3D micro/nanofabrication of polymers for tissue engineering applications, Opt. Laser Technol., 45, 518–524 (2013), https://doi.org/10.1016/j.optlastec.2012.05.038.
I. Dumbryte, L. Linkeviciene, M. Malinauskas, T. Linkevicius, V. Peciuliene and K. Tikuisis, Evaluation of enamel micro-cracks characteristics after removal of metal brackets in adult patients, Eur. J. Orthod., 35(3), 317–322 (2013), https://doi.org/10.1093/ejo/cjr137.
L. Maigyte, V. Purlys, J. Trull, M. Peckus, C. Cojocaru, D. Gailevicius, M. Malinauskas and K. Staliunas, Flat lensing in the visible frequency range by woodpile photonic crystals, Opt. Lett, 38(14), 2376–2378 (2013), https://doi.org/10.1364/OL.38.002376.
M. Malinauskas, M. Farsari, A. Piskarskas and S. Juodkazis, Ultrafast laser nanostructuring of photopolymers: A decade of advances, Phys. Rep., 533(1), 1–31 (2013), https://doi.org/10.1016/j.physrep.2013.07.005.
V. Purlys, L. Maigyte, D. Gailevicius, M. Peckus, M. Malinauskas and K. Staliunas, Spatial filtering by chirped photonic crystals, Phys. Rev. A, 87(3), (2013), https://doi.org/10.1103/PhysRevA.87.033805.
S. Rekstyte, M. Malinauskas and S. Juodkazis, Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds, Opt. Express, 21(14), 17028–17041 (2013), https://doi.org/10.1364/OE.21.017028.
S. Rekstyte, A. Zukauskas, V. Purlys, Y. Gordienko and M. Malinauskas, Direct laser writing of 3D polymer micro/nanostructures on metallic surfaces, Appl. Surf. Sci., 270, 382–387 (2013), https://doi.org/10.1016/j.apsusc.2013.01.034.
E. Stankevicius, M. Gedvilas, B. Voisiat, M. Malinauskas and G. Raciukaitis, FABRICATION OF PERIODIC MICRO-STRUCTURES BY HOLOGRAPHIC LITHOGRAPHY, Lith. J. Phys., 53(4), 227–237 (2013).
A. Zukauskas, M. Malinauskas and E. Brasselet, Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale, Appl. Phys. Lett., 103(18), (2013), https://doi.org/10.1063/1.4828662.
A. Zukauskas, M. Malinauskas, A. Kadys, G. Gervinskas, G. Seniutinas, S. Kandasamy and S. Juodkazis, Black silicon: substrate for laser 3D micro/nano-polymerization, Opt. Express, 21(6), 6901–6909 (2013), https://doi.org/10.1364/OE.21.006901.
2012
P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas and M. Malinauskas, Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering, J. Biomed. Opt., 17(8), (2012), https://doi.org/10.1117/1.JBO.17.8.081405.
P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, M. Malinauskas, V. Bukelskiene, R. Gadonas, V. Sirvydis and A. Piskarskas, Direct Laser Fabrication of Polymeric Implants for Cardiovascular Surgery, Mater. Sci. - Medziagotyra, 18(2), 145–149 (2012), https://doi.org/10.5755/j01.ms.18.2.1917.
M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis and A. Piskarskas, In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers, Appl. Phys. A, 108(3), 751–759 (2012), https://doi.org/10.1007/s00339-012-6965-8.
M. Malinauskas, G. Kirsanske, S. Rekstyte, T. Jonavicius, E. Kaziulionyte, I. Jonusauskas, A. Zukauskas, R. Gadonas and A. Piskarskas, NANOPHOTONIC LITHOGRAPHY: A VERSATILE TOOL FOR MANUFACTURING FUNCTIONAL THREE-DIMENSIONAL MICRO-/NANO-OBJECTS, Lith. J. Phys., 52(4), 312–326 (2012).
M. Malinauskas, A. Zukauskas, K. Belazaras, K. Tikuisis, V. Purlys, R. Gadonas and A. Piskarskas, Laser fabrication of various polymer microoptical components, EPJ Appl. Phys., 58(2), (2012), https://doi.org/10.1051/epjap/2012110475.
M. Malinauskas, A. Zukauskas, V. Purlys, A. Gaidukeviciute, Z. Balevicius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, R. Gadonas, M. Vamvakaki and M. Farsari, 3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing, Opt. Lasers Eng., 50(12), 1785–1788 (2012), https://doi.org/10.1016/j.optlaseng.2012.07.001.
E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius and M. Malinauskas, Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique, J. Micromech. Microeng., 22(6), (2012), https://doi.org/10.1088/0960-1317/22/6/065022.
A. Zukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov and R. Gadonas, Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization, Appl. Opt., 51(21), 4995–5003 (2012), https://doi.org/10.1364/AO.51.004995.
2011
M. Malinauskas, P. Danilevicius and S. Juodkazis, Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses, Opt. Express, 19(6), 5602–5610 (2011), https://doi.org/10.1364/OE.19.005602.
A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Loebler, K. Sternberg, K.-P. Schmitz and A. Haverich, Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications, Acta Biomater., 7(3), 967–974 (2011), https://doi.org/10.1016/j.actbio.2010.10.023.
D. Paipulas, V. Kudriasov, M. Malinauskas, V. Smilgevicius and V. Sirutkaitis, Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses, Appl. Phys. A, 104(3), 769–773 (2011), https://doi.org/10.1007/s00339-011-6428-7.
E. Stankevicius, M. Malinauskas, M. Gedvilas, B. Voisiat and G. Raciukaitis, Fabrication of Periodic Micro-Structures by Multi-Photon Polymerization Using the Femtosecond Laser and Four-Beam Interference, Mater. Sci. - Medziagotyra, 17(3), 244–248 (2011).
J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis and K. Staliunas, Formation of collimated beams behind the woodpile photonic crystal, Phys. Rev. A, 84(3), (2011), https://doi.org/10.1103/PhysRevA.84.033812.
2010
E. Brasselet, M. Malinauskas, A. Zukauskas and S. Juodkazis, S Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum, Appl. Phys. Lett., 97(21), (2010), https://doi.org/10.1063/1.3517519.
M. Malinauskas, G. Bickauskaite, M. Rutkauskas, D. Paipulas, V. Purlys and R. Gadonas, SELF-POLYMERIZATION OF NANO-FIBRES AND NANO-MEMBRANES INDUCED BY TWO-PHOTON ABSORPTION, Lith. J. Phys., 50(1, SI), 135–140 (2010), https://doi.org/10.3952/lithjphys.50115.
M. Malinauskas, P. Danilevicius, D. Baltriukiene, M. Rutkauskas, A. Zukauskas, Z. Kairyte, G. Bickauskaite, V. Purlys, D. Paipulas, V. Bukelskiene and R. Gadonas, 3D ARTIFICIAL POLYMERIC SCAFFOLDS FOR STEM CELL GROWTH FABRICATED BY FEMTOSECOND LASER, Lith. J. Phys., 50(1, SI), 75–82, (2010), https://doi.org/10.3952/lithjphys.50121.
M. Malinauskas, H. Gilbergs, A. Zukauskas, V. Purlys, D. Paipulas and R. Gadonas, A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses, J. Opt., 12(3), (2010), https://doi.org/10.1088/2040-8978/12/3/035204.
M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukeviciute and R. Gadonas, FEMTOSECOND VISIBLE LIGHT INDUCED TWO-PHOTON PHOTOPOLYMERIZATION FOR 3D MICRO/NANOSTRUCTURING IN PHOTORESISTS AND PHOTOPOLYMERS, Lith. J. Phys., 50(2), 201–207 (2010), https://doi.org/10.3952/lithjphys.50203.
M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas and S. Juodkazis, Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses, Opt. Express, 18(10), 10209–10221 (2010), https://doi.org/10.1364/OE.18.010209.
M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari and S. Juodkazis, Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization, J. Opt., 12(12), (2010), https://doi.org/10.1088/2040-8978/12/12/124010.
D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas and V. Sirutkaitis, MANUFACTURING OF DIFFRACTIVE ELEMENTS IN FUSED SILICA USING HIGH REPETITION RATE FEMTOSECOND Yb:KGW LASER PULSES, Lith. J. Phys., 50(1, SI), 129–134 (2010), https://doi.org/10.3952/lithjphys.50109
D. Paipulas, V. Kudriasov, K. Kurselis, M. Malinauskas, S. Ost and V. Sirutkaitis, Volume Bragg Grating Formation in Fused Silica with High Repetition Rate Femtosecond Yb:KGW Laser Pulses, J. Laser Micro Nanoeng., 5(3), 218–222 (2010), https://doi.org/10.2961/jlmn.2010.03.0007.
A. Zukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris and R. Gadonas, ORGANIC DYE DOPED MICROSTRUCTURES FOR OPTICALLY ACTIVE FUNCTIONAL DEVICES FABRICATED VIA TWO-PHOTON POLYMERIZATION TECHNIQUE, Lith. J. Phys., 50(1, SI), 55–61 (2010), https://doi.org/10.3952/lithjphys.50112.
Conferences
2023
2022
M. Malinauskas, Optical 3D Printing of Plant-Based Resins and Ceramic Materials, VI 'PhotonicsMeetsBiology' (27 July - 1 August 2022).
J. Jeršovaitė, U. Šarachovaitė, I. Matulaitienė, G. Niaura, D. Baltriukienė and M. Malinauskas, Biocompatibility evaluation and enhancement in vitro of optically 3D printed micro-porous scaffolds, VI 'PhotonicsMeetsBiology' (27 July - 1 August 2022).
2021
S. Rekstyte, E. Skliutas and M. Malinauskas, Mesoscale laser 3D printing for advanced biofabrication, Proc. SPIE 11786, Optical Methods for Inspection, Characterization, and Imaging of Biomaterials V, 117861P (20 June 2021), https://doi.org/10.1117/12.2593108.
M. Malinauskas, Laser Multiscale 3D Lithography of Plant Based Resins, Laser Congress 2021 (ASSL,LAC), Optica Publishing Group, LTu5A-1 (October 2021).
E. Skliutas, S. Rekštytė and M. Malinauskas, Laser Lithography for Bioprinting: From 3D Scaffolds to Plant Based Resins, Conference on Lasers and Electro-Optics (CLEO), AW4D-5 (May 2021).
E. Skliutas, M. Lebedevaite, S. Kasetaite, S. Rekstyte, S. Lileikis, J. Ostrauskaite and M. Malinauskas, A universal bio-based resin for a multi-platform and meso-scale optical 3D printing, Proc. SPIE, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIV, 116960Q (5 March 2021), https://doi.org/10.1117/12.2578063.
S. Varapnickas, M. Ryu, D. Gailevicius, T. Suzuki, G. Merkininkaite, S. Sakirzanovas, J. Morikawa, S. Juodkazis and M. Malinauskas, Glassy free-form 3D micro-optics enabled via ultrafast laser 3D nanolithography, Proc. SPIE , Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIV, 1169610 (5 March 2021), https://doi.org/10.1117/12.2578469.
Dissertation
Jonušauskas, Linas. 3D Laser Lithography of Meso-Scale Structures: towards Applications. Doctoral Dissertation: Technological Sciences, Material Engineering (T 008). Vilnius University Press, 2021, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD88871714.
Rekštytė, Sima. Tiesioginio Lazerinio Rašymo Femtosekundiniais Šviesos Impulsais Skaidriose Tinklinamose Medžiagose Metodų Vystymas Ir Taikymai. Daktaro Disertacija: Fiziniai Mokslai, Fizika (02P). Vilniaus Universitetas, 2016, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD18302894.
Malinauskas, Mangirdas. Fabrication of Functional 3D Micro/Nanostructures by Laser Multiphoton Polymerization Technique. Daktaro Disertacija: Fiziniai Mokslai, Fizika (02P). Vilniaus Universitetas, 2010, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD1879026.
Bachelor's and master's thesis
Master's thesis
Tamulaitis, Emantas. Muaro Raštų Polimerinių Mikrojutiklių, Integruotų Stiklo Kanaluose, Tyrimas. Vilniaus Universitetas. Prieiga per ELABa – Nacionalinė Lietuvos Akademinė Elektroninė Biblioteka, 2021, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD107165291.
Gonzalez Hernandez, Diana Laura. Measurement of Optical Refractive Index for 3d Microcomponents. Vilniaus Universitetas. Prieiga per ELABa – Nacionalinė Lietuvos Akademinė Elektroninė Biblioteka, 2021, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD107205794.
Čekanavičius, Laurynas. Polimerinių Tūrinių Mikrodarinių Atsparumo Femtosekundinei Lazerinei Spinduliuotei Tyrimas. Vilniaus Universitetas. Prieiga per ELABa – Nacionalinė Lietuvos Akademinė Elektroninė Biblioteka, 2018, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD29759464.
Varapnickas, Simonas. Fotojautrių Nanokompozitų Polimerizacijos, Inicijuotos Femtosekundiniais Impulsais, Savybių Tyrimas. Vilniaus Universitetas. Prieiga per ELABa – Nacionalinė Lietuvos Akademinė Elektroninė Biblioteka, 2017, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD24421990.
Jonušauskas, Linas. Plazmoninėmis Nanodalelėmis Legiruoto Hibridinio Polimero 3D Mikrostruktūrinimas Femtosekundiniais Lazeriniais Impulsais. Vilniaus Universitetas. Prieiga per ELABa – Nacionalinė Lietuvos Akademinė Elektroninė Biblioteka, 2016, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD20203604.
Bachelor's thesis
Adomaitis, Martynas. Multiskalinių Darinių Formavimas Kombinuojant Vienfotonę Ir Daugiafotonę Litografijas. Vilniaus Universitetas. Prieiga per ELABa – Nacionalinė Lietuvos Akademinė Elektroninė Biblioteka, 2021, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD107205455.
Skliutas, Edvinas. Gamtinės Kilmės Dervų Fotostruktūrinimas Dinaminės Projekcinės Litografijos Būdu. Vilniaus Universitetas. Prieiga per ELABa – Nacionalinė Lietuvos Akademinė Elektroninė Biblioteka, 2017, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD24421853.
Grigalevičiūtė, Giedrė. Lanksčių Mikroporėtų 3D Karkasų Formavimas Rastrinės Ir Projekcinės Litografijos Būdais. Vilniaus Universitetas. Prieiga per ELABa – Nacionalinė Lietuvos Akademinė Elektroninė Biblioteka, 2017, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD24421962.
Rimšelis, Gabrielius. Mikromechaninių Darinių Formavimas Lazerinės Litografijos Būdu Ir Jų Charakterizavimas. Vilniaus Universitetas. Prieiga per ELABa – Nacionalinė Lietuvos Akademinė Elektroninė Biblioteka, 2016, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD23238086.
Mickevičius, Arnas. Femtosekundinių Lazerinių Impulsų Indukuotas Tiesioginis Mikrodalelių Pernešimas. Vilniaus Universitetas. Prieiga per ELABa – Nacionalinė Lietuvos Akademinė Elektroninė Biblioteka, 2016, https://virtualibiblioteka.vu.lt/permalink/f/adkqee/ELABAETD24077460.
Partners
Projects
Ongoing projects:
Laserlab-Europe (2004, ES)
Laserlab-Europe, the Integrated Initiative of European Laser Research Infrastructures, understands itself as the central place in Europe where new developments in laser research take place in a flexible and co-ordinated fashion beyond the potential of a national scale. The Consortium currently brings together 35 leading organisations in laser-based inter-disciplinary research from 18 countries. Its main objectives are to maintain a sustainable inter-disciplinary network of European national laboratories; to strengthen the European leading role in laser research through Joint Research Activities; and to offer access to state-of-the-art laser research facilities to researchers from all fields of science and from any laboratory in order to perform world-class research.
https://www.laserlab-europe.eu/
In this project, the laser nanophotonics group is directly involved in these parts:
- Transnational Access: Transnational Access — LASERLAB-EUROPE.
- ALTIS - Advanced Laser-based Techniques for Imaging and Spectroscopy in material science and biomedicine (Coordinator: LENS): Joint Research 2019-2023 — LASERLAB-EUROPE.
- Member of the Micro- and nano-structured materials for experiments with high-power lasers group: Micro- and nano-structured materials for experiments with high-power lasers — LASERLAB-EUROPE.
- Member of the Laser for Clean Energy Laser group: Members of the Expert Group Laser for clean energy — LASERLAB-EUROPE.
Completed projects:
Click dual-cured plant-derived polymers for laser 3D meso-scale structuring (2020, LMT)
Number: P-MIP-20-374
Head: Jolita Ostrauskaitė (KTU, Lithuania)
Participants: Prof. M.Malinauskas (VU, Lithuania), E. Skliutas (VU, Lithuania)
Duration: 36 months
Funding: 150 kEUR
Funding agency: The Research Council of Lithuania, Researcher Groups projects
Project description:
The aim of this Project is to develop a click dual-curing technology for production of novel polymeric materials from plant-derived monomers, using photoinduced and/or combination of photoinduced and thermally activated reactions, applicable for laser 3D meso-scale structuring. For the achievement of the goal, the investigation of various plant-derived monomer polymerization by different click methods and selection of optimal ones for dual-curing technology, optimization of click dual-curing resin formulations and curing conditions, characterization of resulted polymers and investigation of their properties will be carried out. The selected click dual-curing systems will be tested via laser 3D structuring in meso-scale and optimized. The state-of-the-art optical characterization of 3D microstructures will be performed. The feasibility test in industrial line conditions will be carried out.
Nanostructures for Highly Efficient Infrared Detection (2016, NATO)
Number: 985048
Head: Prof. K. Staliunas (UPC, Spain)
Partners: Prof. V. Mizeikis (SU, Japan), Prof. S. Juodkazis (SUT, Australia), Prof. H. Kurt (TOBB, Turkey)
Head of the VU part: M. Malinauskas (VU, Lithuania)
Executors of the VU part: D. Gailevičius (VU, Lithuania)
Duration: 36 months
Funding: 400 kEUR (416 950)
Funding agency: NATO Science for Peace Programme, Grant No. 985048
Project description:
We proposed a high sensitivity photodetection tool at near-infrared frequencies, based on a novel principle of slowed- and stopped-light in chirped photonic micro/nano-structures. The main goal is to substantially increase the efficiency of photodetection and to provide a chromatic resolution of photodetection for obscured- and night vision devices working at near-infrared frequencies. The developed technique may be extended to mid- or far-infrared and microwave (terahertz) detection.
The consortium brings together the expertises of groups working on stopped light (conceptual part), micro/nano-fabrication of photonic artificial materials (photonic crystal part) and photosensitive materials (photodetection part), i.e. represent all basic skills to successfully attain the proposal.
Network of Service Providers for Eco-innovations in Manufacturing SMEs - ECOLABNET (2019, EU ERDF)
Number: #R077
Head: Miia Lammi (MUOVA, Finland)
Duration: 3 years
Funding: 2,372 MEUR
Funding agency: EU ERDF, INTERREG BSR Programme, (ECOLABNET project (#R077))
Project description:
A lack of strong ties between small and medium sized enterprises and research centres hampers eco-innovations in the Baltic sea region. In parallel, there is untapped potential of implementing sustainable strategies in business, the example of which is a cohesive delivery of products and services. The ECOLABNET project sets up a network across the value chain of products that integrates product-service system designers, bio-based material researchers, 3D print technology providers, eco-branding specialists and business developers in order to drive sustainable eco-innovations, e.g. in medical diagnostics and electronics.
Fabrication of micro-/nano-optical components via direct laser writing and electron beam lithography “MicroLight” (2012, LMT)
Number: MIP-12241
Head: Prof. M.Malinauskas (VU, Lithuania)
Participants: A. Žukauskas (VU, Lithuania), V. Purlys (VU, Lithuania), R. Gadonas (VU, Lithuania)
Partners: V. Jukna (Panevėžio mechatronikos centras, Lithuania)
Duration: 36 months
Funding: 97 kEUR
Funding agency: The Research Council of Lithuania, Researcher Groups projects
Project description:
Darbas vykdytas lazerių fizikos, optikos, medžiagų mokslo ir chemijos mokslų sandūroje, siekiant įsisavinti ir panaudoti modernias tiesioginio rašymo technologijas daugiafunkcinių mikrooptikos ir nanooptikos komponentų formavimui bei integruoti juos į jau naudojamus lustus. Tiesioginio rašymo technologija vienu etapu leidžia sukurti reikiamos formos ir paskirties daugiafunkcinius mikrooptikos komponentus įvairiems taikymams pagrįstiems šviesos valdymu mikrometriniame mastelyje. Pagrindinės taikymo sritys yra telekomunikacija, mikroskopija, biologija ir medicina, lazerinių šaltinių gamyba, saulės elementų pramonė. Naudojant elektronų pluošto litografiją galima suformuoti itin aukštos erdvinės skyros nanometrinių matmenų planarinius optinius elementus.
Pagrindinis teikiamo projekto tikslas – įgyti supratimą ir eksperimentinę patirtį kaip tiesioginio lazerinio ir elektronų pluošto rašymo būdais galima formuoti įvairius mikrooptikos ir nanooptikos komponentus iš naujos kartos hibridinių organinių-neorganinių fotopolimerų, ištirti to ypatumus, apibūdinti tokių darinių optines savybes ir palyginti su teorinėmis vertėmis. Siekiant šio tikslo numatoma spręsti keletą uždavinių: vystyti ir optimizuoti darinių įrašymo polimeruose procesą bei jų ryškinimą po švitinimo, atrinkti optimalias hibridines medžiagas, tinkamas mikrooptinių ir nanooptinių komponentų formavimui ir jų taikymui, įvertinti komponentų kokybę ir charakterizuoti jų veikimą, įvertinti eksperimentinių rezultatų atitikimą modeliniams skaičiavimams.
Įvykdžius projektą išvystytas lankstus reikiamos formos funkcinių mikrooptikos ir nanooptikos elementų formavimas, pvz.: mikrolęšiai su fazinėmis gardelėmis, Frenelio, asferiniai ir cilindriniai bifokaliniai mikrolęšiai bei jų masyvai. Taip pat bus išbandyta ir išmokta juos formuoti ant įvairių paviršių (stiklo, metalo, silicio) ir integruoti į jau esančias sistemas (šviesolaidžio galas, mikrofluidiniai ir optofluidiniai lustai, saulės baterijos).
Creation of biologically active regular three-dimensional structures for tissue molecular bioengineering “BioMatriX” (2012, MITA)
Number: 31V-43/2013
Head: Prof. M.Malinauskas (VU, Lithuania)ir R. Gadonas (VU, Lietuva)
Participants: S. Rekštytė (VU, Lietuva), G. Bičkauskaitė (VU, Lietuva)
Duration: 24 months
Funding: 200 kEUR (199,987)
Funding agency: Agency for Science, Innovation and Technology, Grant No. 31V-43/2013
R&D studies (2016, WoP)
Head: Prof. M.Malinauskas (VU, Lithuania)
Participants: S. Rekštytė (VU, Lietuva)
Duration: 16 months
Funding: ~7 kEUR
Funding agency: Workshop of Photonics
Optical 3D micro‐/nano‐processing of bioplastics (2016, LMT)
Number: S-LAT-17-2
Head: Prof. M.Malinauskas (VU, Lithuania)
Participants: E. Skliutas (VU, Lithuania), L. Jonušauskas (VU, Lithuania)
Duration: 18 months
Funding: 160 kEUR
Funding agency: The Research Council of Lithuania programme "Towards future technologies"
Enhanced Absorbtion in Stopped-Light Photonic Nanostructures: Application to Efficient Sensing (2016, US Army)
Number: W911NF-16-2-0069
Head: Prof. M.Malinauskas (VU, Lithuania)
Duration: 30 months
Funding: 111 kEUR
Funding agency: US army
Fabrication of 3D microstructured and collagen scaffolds with chondrogenic cells and translational application for cartilage regeneration - REGEN (2015, LMT)
Number: SEN‐15092
Head: Dr. R. Mačiulaitis (LSMU, Lithuania)
Participants: S. Rekštytė (VU, Lithuania)
Duration: 31 months
Funding: 199711 EUR
Funding agency: The Research Council of Lithuania programme "Healthy ageing"
Project description:
Osteoarthritis is a degenerative joint injury, especially prevalent among older people. This is among the most common causes of pain and disability in the world. Osteoarthritis is usually the end result of cartilage damage, which tends not to heal spontaneously. Despite the growing number of articular cartilage damage, there is still no effective cartilage structure restoring treatment.
Recently, much attention is being paid to biological cartilage regeneration to repair hyaline cartilage tissue and delay disease progression. Articular cartilage lesions are successfully treated using autologous chondrocyte implantation for more than 20 years. In order to increase the effectiveness of treatment, it is necessary to improve procedures for cell isolation, cultivation, and growing on the scaffold. To justify this strategy we previously conducted a proof‐of‐concept study which has produced positive results on the ability of cells to proliferate, express chondrogenic markers; cells biocompatibility with microstructured scaffold was evaluated on morphological, histological, molecular levels; characterization was carried out at every stage and in vivo preclinical study showed that the therapeutic cellular product is biocompatible, safe, efficient for regeneration of cartilage tissue.
The planned study represents further steps of our scientific research with a focus on elucidation of product biocompatibility and clinical translation. The project aims to develop and characterize the most effective microstructured scaffold with animal (rabbit) and human cells. Results of our original work will be applied in search for an optimal type of scaffold and production methods. Formed construct will be used in preclinical model, and treatment safety and efficacy will be compared with positive and negative control groups. In case positive results will be obtained, newly acquired data can be adapted for clinical applications.
For students
laboratory work
For master students of Laser Physics and Optical Technologies and Laser Technology programs
Laboratory assignment MNFT-1: FABRICATION OF 3D POLYMERIC MICROSTRUCTURES USING PULSED 3D DIRECT LASER LITHOGRAPHY
Description of laboratory work: MNFT-1_EN.pdf
3DPoli compiler programming language: 3DPoli_Compiler.pdf
Additional literature: Additional literature_preprints201812.0119.v1.pdf
Laboratory assignment MNFT-2: FAST REPLICATION OF MICROSTUCTURES BY MOLDING
Description of laboratory work: MNFT-2.pdf
PEG-DA 700 specifications: Annex_2_-PEG-DA-700.pdf
Autodesk Standard Clear Prototyping Resin (PR48) specifications: Annex_1_-Autodesk_Standard_Clear_PR48_Formulation.pdf
Laboratory assignment MNFT-3: ASSESSMENT OF THE SPATIAL RESOLUTION IN Z AXIS OF THE DIGITAL LIGHT PROCESSING-BASED 3D PRINTING EMPLOYING BEER-LAMBERT LAW
Description of laboratory work: MNFT3_EN.pdf
Additional literature: Annex_2_-How_to_take_a_working_curve_measurement_and_create_exposure_settings_from.pdf
Laboratory assignment MNFT-4: MODIFICATION OF REFRACTIVE INDEX OF GLASS EMPLOYING ULTRASHORT PULSED IRRADIATION
Description of laboratory work: MNFT-4_EN.pdf
For bachelor students of Light Engineering program
Laboratory assignment MNT-1: ASSESSMENT OF THE SPATIAL RESOLUTION IN Z AXIS OF THE DIGITAL LIGHT PROCESSING-BASED 3D PRINTING EMPLOYING BEER-LAMBERT LAW
Description of laboratory work: MNT_1_EN.pdf
Additional literature: Annex_2_-How_to_take_a_working_curve_measurement_and_create_exposure_settings_from.pdf
Autodesk Standard Clear Prototyping Resin (PR48) specifications: Annex_1_-Autodesk_Standard_Clear_PR48_Formulation.pdf
Laboratory assignment MNT-2: FABRICATION OF 3D POLYMERIC MICROSTRUCTURES USING PULSED 3D DIRECT LASER LITHOGRAPHY
Description of laboratory work: MNT-2_EN.pdf
3DPoli compiler programming language: 3DPoli_Compiler.pdf
Additional literature: Additional literature_preprints201812.0119.v1.pdf
Lectures
For doctoral students:
For Master's students:
Micro- and Nano-Fabrication Technologies: NMFT_Nano-_and_Micro-Fabrication_Technologies_EN_2022.doc
For Bachelor's students:
Nano- and Micro-Structure Technologies: NANO-_IR_MIKRO-DARINIŲ_TECHNOLOGIJOS_STUDIJŲ_DALYKAS_2022-02-09.docx
Suggested topics
Dissertation of doctoral studies:
Nr. |
Supervisor of doctoral theses topic |
Topic name in Lithuanian and English |
Student / Free |
1. |
Malinauskas, Mangirdas, |
Fotopolimerizacijos spartos ir lokalizacijos tyrimas varijuojant ekspozicijos bei aplinkos parametrais / Study of photopolymerization rate and localization by varying exposure and ambient parameters | Edvinas Skliutas |
2. |
Malinauskas, Mangirdas, |
Laisvos formos stikliškų mikrooptiniu komponentų kūrimas naudojant daugiafotonę 3D nanolitografiją / Advanced Free-Form Glassy Micro-Optics Enabled via Multi-Photon 3D Nanolithography | Giedrius Balčas |
Master's thesis:
Nr. |
Supervisor of the thesis |
Topic name in Lithuanian and English |
Student / Free |
1. |
Malinauskas, Mangirdas, |
3D mikrokarkasų iš bioskaidaus polimero be fotoiniciatoriaus formavimas lazerinės litografijos būdu / Fabrication of 3D micro-scaffolds from biodegradable polymer via Laser Lithography without the use of a photoinitiator | Jurga Jeršovaitė |
2. |
Malinauskas, Mangirdas, |
3D nano-optinių darinių formavimas lazerinės litografijos ir kalcinacijos būdu / Fabrication of 3D nano-optical structures via laser lithography and calcination | Eulalia Puig Vilardell |
Esasmus + traineeship:
Nr. |
Supervisor of the traineeship |
Topic name in Lithuanian and English |
Student / Free |
1. |
Malinauskas, Mangirdas, |
Mažo tankio medžiagų formavimas lazerinės 3D litografijos būdu / Fabrication of low-density materials by laser 3D lithography | Ioanna-Angeliki Petsi |
News
Optical Fellow Profile - Mangirdas Malinauskas:
optica.org/get_involved/awards_and_honors/fellow_members/fellow_profiles/mangirdas_malinauskas/
Newest submission:
D. Ladika, A. Butkus, V. Melissinaki, E. Skliutas, E. Kabouraki, S. Juodkazis, M. Farsari, M. Malinauskas, X-
photon 3D lithography by fs-oscillators: wavelength-independent and photoinitiator-free, Preprint, Research
Square (2023); https://doi.org/10.21203/rs.3.rs-3708475/v1
-------------------------------------------------------------------------------------------------------------------------------
Long and strong - Edvinas Skliutas defended his PhD on October 20th. Now we can call him Doctor :)
Congratuliations! Many thanks committee and audience for questions, family for foods and drinks.
COLA 2024 (September 29 – October 4, Crete, Greece) Chairs announced:
- Dr. Maria Farsari, IESL-FORTH, Greece;
- Prof. Mangirdas Malinauskas, Vilnius University, Lithuania;
- Prof. Masoud Mahjouri-Samani, Auburn University, USA;
- Prof. Godai Miyaji, Tokyo University of Agriculture and Technology, Japan.
A science popularisation publication on Phys.org: X-photon 3D nanolithography (phys.org)
3D resolution bridge (RB) printing and line analysis. (a) Illustration of GDD pre-compensated pulses propagating to the objective of NA = 1.4. After they pass the objective, τ = 100 fs at each λ; (b) Illustration of the RB method. The suspended single-voxel-wide lines are photopolymerized between support pillars, each row with different light intensity; (c) SEM image of the entire RB object with lines and support pillars. The white scale bar at the bottom right corner is 20 µm; (d) Scheme representing calculated nef for used excitation light and their arrangement over measured absorbance spectra of photosensitized SZ2080. Gray vertical arrows visualize a number of photons for ground-to-excited state transition. Credit: Virtual and Physical Prototyping (2023). DOI: 10.1080/17452759.2023.2228324
Student Jurga Jeršovaitė has been awarded the President Aleksandras Stulginskis (Mathematics, Informatics and Physical Sciences Study Group) scholarship and will not be bored this summer with her LMT Student Research Summer Project entitled: "Investigation the potential of 3D laser printing of the biodegradable PCL-A polymer for the fabrication and application in the production of biomedical scaffolds".
Newest publication:
E. Skliutas, D. Samsonas, A. Čiburys, L. Kontenis, D. Gailevičius, J. Beržins, D. Narbutis, V. Jukna, M. Vengris, S. Juodkazis, M. Malinauskas, X-photon laser direct write 3D nanolithography, Virtual. Phys. Prototyp. (2023); https://doi.org/10.1080/17452759.2023.2228324.
LIGHT: ADVANCED MANUFACTURING - Call for papers to Special Issue on Extreme Manufacturing
https://light-am.com/news/index_tabliod_en/201ef0b9-fb9a-49ab-a6be-485e0fdd84f3_en.htm
Submission deadline: 31 October 2023
Prof. Mangirdas Malinauskas participated in the CLEO conference
Team member Karolis Galvanauskas
graduated master's studies in 2023
with Magna Cum Laude diploma 🎉🎉🎉
5 June 2023 - Guests from the Kyiv Polytechnic Institute of the National Technical University of Ukraine visit to make a presentation:
- Speaker: Prof. Sergii Stirenko
Presentation of the current NATO SPS project #G6032 “UAV Mosquito Fleet for Smart Swarm Operations (UAVM4SSO)”
Abstract
The Edge Intelligence concept of ultra-small and ultra-cheap Unmanned Aerial Vehicles (UAVs) with correlated behavior, UAV Mosquito Fleet (UAFMF), is proposed for implementation of Unmanned Drone Swarm Operations (UDSOs) in monitoring, rescue, reconnaissance, … operations. The main idea is to create UAFMF management platform, improve the state-of-the-art (SOTA) deep neural networks (DNNs) for UDSOs, and adopt DNNs for UAVs with the limited computing resources and power supply.
- Speaker: Dr. Yuri Gordienko
Review of the Current Object Detection Methods Used in NTUU KPI (Kyiv, Ukraine)
2.1. YOLOv4 - Context-Aware Data Augmentation for Efficient Object Detection by UAV Surveillance.
Abstract
The problem of object detection by YOLOv4 deep neural network (DNN) is considered on drone dataset with object classes (pedestrians, bicyclists, cars, skateboarders, golf carts, and buses) collected by Unmanned Aerial Vehicle (UAV) video surveillance. Some frames (images) with labels were extracted from videos of this dataset and structured in the open-access SDD frames (SDDF) version (https://www.kaggle.com/yoctoman/stanford-drone-dataset-frames). The context-aware data augmentation (CADA) was proposed to change bounding box (BB) sizes by some percentage of its width and height. Several CADA-sequences were analyzed and the best strategy consists in first-IN-then-OUT CADA procedures, where the extent of decrease and increase of BBs width and height can be different for various applications and datasets
2.2.Example 2: YOLOv5 family - Object Detection for Rescue Operations by High-altitude Infrared Thermal Imaging Collected by Unmanned Aerial Vehicles.
Abstract
The analysis of the object detection deep learning model YOLOv5, which was trained on High-altitude Infrared Thermal (HIT) imaging, captured by Unmanned Aerial Vehicles (UAV) is presented. The performance of the several architectures of the YOLOv5 model, specifically ’n’, ’s’, ’m’, ’l’, and ’x’, that were trained with the same hyperparameters and data is analyzed. The dependence of some characteristics, like average precision, inference time, and latency time, on different sizes of deep learning models, is investigated and compared for infrared HIT-UAV and standard COCO datasets. According to the findings, the significance and value of the research consist in comparing the performance of the various models on the datasets COCO and HIT-UAV, infrared photos are more effective at capturing the real-world characteristics needed to conduct better object detection.
2.3.Example 3: The Other Current Object Detection Methods and Future Plans Proposed by NTUU KPI (Kyiv, Ukraine)
Abstract
The real-world (from Russia’s war on Ukraine) UAV experience collected by the authors and end users will be reviewed in the context of possible application of advanced optical systems and AI-ML-DL-based methods.
3. Speakers: Dr. Olexandr Rokovyi, Oleg Alienin
Review of the Current UAV Navigation Methods Used in NTUU KPI (Kyiv, Ukraine)
Abstract
The current UAV operation experience collected by the authors and end users will be reviewed in the context of possible application of advanced optical systems and UAV navigation methods under field conditions in the dangerous operation zones.
Demo Conditions: The further details will be provided later, but at the moment we assume that any “playground” with the sizes (100 m * 100 m * 50 m) which is free of any objects will be sufficient to demonstrate the basic concepts and ideas. It could be like an empty football field or any kind of grass field, lawn, etc. This “playground” is assumed to be used for the further experiments at LRC.
Latest publication:
J. Jeršovaitė, U. Šarachovaitė, I. Matulaitienė, G. Niaura, D. Baltriukienė, M. Malinauskas, Biocompatibility enhancement via post-processing of microporous scaffolds made by optical 3D printer. Front. Bioeng. Biotechnol., 11:1167753 (2023), https://doi.org/10.3389/fbioe.2023.1167753
We will give oral presentations at the CLEO conference (in the topicCE: Optical Materials, Fabrication and Characterisation of the CLEO/Europe-EQEC Conference).
Presentations by members of the Laser Nanophotonics Laboratory:
2023 yr June 26 d, Monday (8:30 - 8:45), Room 1 ICM
Prof. Mangirdas Malinaudkas will present:
Antanas Butkus, Edvinas Skliutas, Dimitra Ladika, Danielius Samsonas, Vasileia Melissinaki, Mikas Vengris, Maria Farsari, Saulius Juodkazis, Mangirdas Malinauskas, "Wavelength independent laser direct writing 3D nanolithography of non-photosensitized SZ2080TM hybrid polymer"
2023 yr June 30 d., Friday (16:30 - 16:45), Room 12a ICM
Karolis Galvanauskas will present:
Prof. Mangirdas Malinauskas joined international advisory committee at ICPEPA-12 (Photoexcited Processes and Applications), which will be held in Suzhou, China from September 18 to 22, 2023.
The topics of the conference range from fundamental laser‐material interactions, theory and modeling to applications with nanoparticles and nanophotonics as well as photoexcitations. More details can be found on the website: https://www.researching.cn/conference/ICPEPA-12
Recent Fellows - Awards & Grants – The Optical Society (OSA) | Optica - Mangirdas Malinauskas
Laser Research Center at Vilnius University, Lithuania
For advancing ultrafast laser 3D lithography and pioneering work towards applying it for micro-optics and biomedical scaffolds
We invite you to free online event: "INSPIRE WITH ECO-INNOVATIONS". Feb 8, 2023. More information: Inspire_with_Eco-innovations.pdf
First publication this year:
M. Vengris, S. Juodkazis, M. Malinauskas, 3D nanopolymerization and damage threshold dependence on laser wavelength and pulse duration, Nanophotonics, online (2023); https://doi.org/10.1515/nanoph-2022-0629.
Latest publication:
New publication was accepted:
D. Samsonas, E. Skliutas, A. Čiburys, L. Kontenis, D. Gailevivčius, J. Berzins, D. Narbutis, V. Jukna, M. Vengris, S. Juodkazis, M. Malinauskas, 3D nanopolymerization and damage thresholds dependence on laser wavelength and pulse duration, Nanophotonics, accepted (2022).
Latest publication:
V. Sereikaite, A. Navaruckiene, J. Jaras, E. Skliutas, D. Ladika, D. Gray, M. Malinauskas, V. Talacka, J. Ostrauskaite, Functionalized Soybean Oil- and Vanillin-Based Dual Cure Photopolymerizable System for Light-Based 3D Structuring, Polymers, 14, 5361 (2022); https://doi.org/10.3390/polym14245361. [Q1, IF - 4.967]
Lastest publications:
S. Grauzeliene, B. Kazlauskaite, E. Skliutas, M. Malinauskas, J, Ostrauskaite, Photocuring and digital light processing 3D printing of vitrimer composed of 2-hydroxy-2-phenoxypropyl acrylate and acrylated epoxidized soybean oil, Exp. Pol. Lett. 17(1), 54-68 (2023); doi: 10.3144/expresspolymlett.2023.5.
D. Gonzalez-Hernandez, S. Varapnickas, A. Bertoncini, C. Liberale, and M. Malinauskas, Micro-Optics 3D Printed via Multi-Photon Laser Lithography, Adv. Opt. Matter., 2201701 (2022); doi: 10.1002/adom.202201701.
A. Butkus, E. Skliutas, D. Gaileviius, M. Malinauskas, Femtosecond-Laser Direct Writing 3D Micro-/Nano- Lithography Using VIS-Light Oscillator, J. Centr. South Univ., 29, 3270-3276 (2022); doi: 10.1007/s11771-022-5153-z.
.October 26 (wednesday) 13h LTC 604
Scientific seminar
BOYANG LIU
"Developing high quality biodegradable polymer resins for additive manufacturing"
Latest publication:
Jurga Jeršovaitė won Nominal Vilnius University Technology Hub (VU Tech Hub) scholarship!
COLA 2024 (September 29 – October 4, Crete, Greece) Chairs announced:
- Chair: Dr. Maria Farsari, IESL-FORTH, Greece;
- CoChair: Prof. Mangirdas Malinauskas, Vilnius University, Lithuania;
- CoChair: Prof. Masoud Mahjouri-Samani, Auburn University, USA;
- CoChair: Prof. Godai Miyaji, Tokyo University of Agriculture and Technology, Japan.
A new article has been submitted to the press:
E. Skliutas, D. Samsonas, A. Čiburys, L. Kontenis, D. Gailevičius, J. Gerziniš, D. Narbutas, V. Jukna, M. Vengris, S. Juodkazis, and M. Malinauskas, X-photon laser direct write 3D nanolithography, under review (2022): X-photon laser direct write 3D nanolithography | Research Square .
A new article has been submitted to the press:
D. Gonzalez-Hernandez, S. Varapnickas , A. Bertoncini, C. Liberale, and M. Malinauskas, Micro-Optics 3D Printed via Multi-Photon Laser Lithography, under review (2022).
In the summer school VI 'PHOTONIC MEETS BIOLOGY' Spetses, Greece, Jurga Jeršovaitė wins best student talk award
A new article has been submitted to the press:
A. Butkus, E. Skliutas, D. Gailevicius and M. Malinauskas, Femtosecond-Laser Direct Writing 3D Micro-/Nano-Lithography Using VIS-Light Oscillator, under review (2022).
Keynote presentation at AOMTA & YSAOM 2022 conference
Mangirdas Malinauskas will present at the "International Conference on Advanced Optical Manufacturing Technologies & Applications 2022 & 2nd International Forum of Young Scientists on Advanced Optical Manufacturing" conference that will be held in Changchun, China (more information: https://b2b.csoe.org.cn/meeting/YSAOM2022.html#150_163):
M. Malinauskas, Ultrafast laser 3D lithography for micro-nano additive manufacturing of bioresins and inorganics, AOMTA & YSAOM (29th to 31st July 2022).
We will participate in the summer school VI 'PHOTONIC MEETS BIOLOGY' Spetses, Greece
Two members of Laser Nanophotonics will present seminars:
M. Malinauskas, Optical 3D Printing of Plant-Based Resins and Ceramic Materials, VI 'PhotonicsMeetsBiology' (27 July - 1 August 2022).
J. Jeršovaitė, U. Šarachovaitė, I. Matulaitienė, G. Niaura, D. Baltriukienė and M. Malinauskas, Biocompatibility evaluation and enhancement in vitro of optically 3D printed micro-porous scaffolds, VI 'PhotonicsMeetsBiology' (27 July - 1 August 2022).
X-ray microtomography is a new tool for today's materials research
June 28 The Laser Research Center (LTC) was visited by Stanford University researcher Dr. Artūras Vailionis.
Fig. 1: dr. A. Vailionis in The Laser Research Center (LTC) (2022.06.28).
During the meeting Dr. A. Vailionis gave a presentation to scientists and the general public on the topic "Introduction to X-ray computed microtomography", which introduced the audience to the main principles and applications of X-ray computed microtomography (µXCT).
Fig. 2: An image of the entire tooth was obtained using X-ray computed microtomography (µXCT).
Dr. Artūrs Vailionis' report read at LMA events - Lithuanian Academy of Sciences can be found at the attached link: https://youtu.be/5CEnIXGQHVE.
Latest publication:
G. Merkininkaitė, E. Aleksandravičius, M. Malinauskas, D. Gailevičius and S. Šakirzanovas, Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures, Opto-Electron Adv, 5, 210077 (2022), doi: 10.29026/oea.2022.210077.
Latest publication:
J. Jaras, A. Navaruckiene, E. Skliutas, J. Jersovaite, M. Malinauskas and J. Ostrauskaite, Thermo-Responsive Shape Memory Vanillin-Based Photopolymers for Microtransfer Molding, Polymers, 14(12), 2460 (2022), https://doi.org/10.3390/polym14122460.
500 EUR dr. Remi Gaška's named scholarship for the best bachelor's thesis on the topic "Optical 3D printing of microporous scaffolds, their biocompatibility evaluation and enhancement in vitro" was awarded to Jurga Jeršovaite, a student of the IV year of the Bachelor's full-time studies of the Applied Physics program of the Faculty of Physics.