About
Main research field: studying the dynamics of non-equilibrium carriers in semiconductors, nanostructures, and other solid-state materials.
Research techniques: a complementary set of advanced nonlinear optical methods including photoluminescence spectroscopy with picosecond time and sub-micrometer spatial resolution, spectrally-resolved pump-probe techniques with femtosecond time resolution, and light-induced transient grating (LITG) technique for simultaneous all-optical determination of carrier lifetime and diffusivity. Numerical simulation of carrier dynamics is currently performed by Monte Carlo technique.
Current research topics:
-
Study of fast processes in self-activated and doped scintillating materials aimed at developing fast radiation detectors with time resolution of the order of 10 ps for applications in medical imaging and high-energy physics experiments, especially targeted on the needs and specifications of the coming upgrades of CERN experiments.
-
Investigation of carrier recombination and diffusion in III-nitride semiconductors and their heterostructures aimed at a better understanding of the impact of carrier localization and internal electrical field on the radiative recombination properties and quantum efficiency of III-nitride LEDs. Currently, a particular focus is on stimulated emission in wide-band-gap nitrides, quantum efficiency of green-emitting InGaN LEDs, and InN-based infrared optoelectronic devices.
-
Analysis of carrier transport peculiarities in hybrid metal-halide perovskite semiconductors. The most significant input to the field is provided by exploiting the unique LITG technique for all-optical measurements of carrier diffusivity in disordered wet-cast and crystalline perovskites of various composition.
Side topics also involve characterization of photovoltaic devices, plasmonics, wide band gap semiconductors (SiC, diamond, GaN) for power electronics, etc.
Researchers
Prof. Gintautas Tamulaitis Chief Researcher Saulėtekio av. 3, room B231 Phone: +370 5 223-4481 |
Prof. Vincas Tamošiūnas Chief Researcher Saulėtekio av. 3, room B226 Phone: +370 5 223-4491 |
Prof. Edmundas Kuokštis
|
Prof. Ramūnas Aleksiejūnas Senior Researcher Saulėtekio av. 3, room B228 Phone: +370 5 223-4492 |
Dr. Jūras Mickevičius Senior Researcher Saulėtekio av. 3, room B221 Phone: +370 5 223-4508 |
Dr. Saulius Nargelas Senior Researcher Saulėtekio av. 3, room B228 Phone: +370 5 223-4492 |
Dr. Patrik Ščajev Senior Researcher Saulėtekio av. 3, room B227 Phone: +370 5 223-4493 |
Dr. Jonas Jurkevičius Researcher Saulėtekio av. 3, room B222 Phone: +370 5 223-4509 |
Dr. Kazimieras Nomeika Researcher Saulėtekio av. 3, room A201 Phone: +370 5 223-4467 |
Dr. Žydrūnas Podlipskas Researcher Saulėtekio av. 3, room A201 Phone: +370 5 223-4467 |
Oleg Kravcov PhD student, Junior Researcher Saulėtekio av. 3, room B225 Phone: +370 5 223-4490 |
Dr. Augustas Vaitkevičius Researcher Saulėtekio av. 3, room B220 Phone: +370 5 223-4509 |
Facilities
Laboratory of Femtosecond Optical Spectroscopy
Experimental Techniques (with femtosecond time resolution):
-
techniques based on nonlinear absorption in pump and probe configuration (tunable pump photon energies for selective excitation, monochromatic light or white-light continuum for probing);
-
light-induced transient grating (LITG) technique (capability to measure carrier lifetime and diffusion coefficient simultaneously).
Equipment:
-
Femtosecond KGW:Yb laser PHAROS (6W@30KHz, 200 fs, 1030 nm, Light Conversion);
-
Two optical parametric amplifiers Orpheus (630–2500 nm, Ligh Conversion);
-
Time-resolved monochromatic/polychromatic optical pump–probe (PP) setup:
-
excitation wavelength range: 210–2500 nm,
-
probe wavelength range 630–2500 nm (monochrome–PP), 380–1700 nm (polychrome–PP), probe delay range: 8 ns;
-
time resolution: ~300 fs.
-
-
LITG setup:
-
excitation wavelength range: 210–1000 nm;
-
probe wavelength range 630–2500 nm, probe delay range: 8 ns;
-
time resolution: ~300 fs.
-
-
Luminescence up-conversion setup:
-
Excitation wavelength range: 210–1000 nm;
-
Gate pulse delay: 8 ns;
-
Time resolution: ~400 fs.
-
-
Becker&Hickl Time-correlated single photon counting (TCSPC) system (spectral range 200–1700 nm, time resolution 200 ps) with Andor Kymera 193i spectrometer;
-
6-inch integrating sphere with BaSO4 coating for absorption and reflection measurements;
-
Avantes Avaspec-2048 StarLine spectrometer (UV enhanced Si sensor);
-
Closed–cycle helium cryostat (10 – 300 K);
-
Liquid nitrogen cryostat (78 – 800 K);
-
Ultrasonic bath, pressurized nitrogen gas and other accessories for sample preparation.
Laboratory supervisor: Dr. Saulius Nargelas
Laboratory of Picosecond Optical Spectroscopy
Experimental techniques (with picosecond time resolution):
- techniques based on nonlinear absorption in pump and probe configuration (tunable pump photon energies for selective excitation, monochromatic light or white-light continuum for probing); Lifetime determination range: 10 ps-12 ns with optical delay, > 200 ps with electrical delay.
- light-induced transient grating (LITG) technique (capability to measure carrier lifetime and diffusion coefficient simultaneously).
- photoconductivity measurements in pump-probe configuration.
- photoluminescence spectra, decay and efficiency measurements.
- volt-amperic characteristics measurements.
Equipment:
- High power Nd:YAG (PL2143, EKSPLA), Nd:YLF (PL2243, EKSPLA) lasers with harmonics (1053, 527, 351, 266, 213 nm) and 25 ps or 8 ps pulse durations, respectively.
- Optical parametric generator PG401 (EKSPLA), wavelength tunable in 400-2000 nm range.
- NL202 (EKSPLA) laser (1064, 532, 355) with 2 ns pulse duration.
- Telecommunication 1550 nm single mode cw-laser (Eblana Photonics Ltd) for monitoring of slow processes (> 0.2 ns).
- High power 5 nanosecond Nd:YAG laser (1064, 532, 800, 1300 nm).
- Precise temperature control CTI-CRYOGENICS cryostat (80 - 800 K temperature range).
- Microwave generator (6,11 GHz), digital storage oscilloscopes (0.35, 6 GHz), waveguides, ultrafast photodetectors (Thorlabs DET08 5 GHz bandwidth, Alphalas 2 GHz), energy meters.
- Optical delay lines (from 10 ps to 12 ns; Standa, Aerotech ACT115DL).
- Highland technology P400 digital delay and pulse generator, <10 ps jitter, 1 ps resolution. Delay generator PG-874.
- Integrating sphere 6 inch (AvaSphere-150), for quantum efficiency measurements, thermoelectrically cooled compact waveguide spectrometer ASEQ Instruments LR1-T (200-1100 nm).
- Broad wavelength imaging 500 cm focal length two-port monochromator-spectrograph (185-3000 nm) SOLAR TII MS520i with thermoelectrically cooled silicon camera (DHYANA400BSI V2 200-1100 nm) and InGaAs camera (NIT, 900-1600 nm).
- Xenon light source (Hamamatsu 75 W super quiet xenon lamp with supply C12122-020-57-C3) in 200-2000 nm range, monochromators coupling (MDP-4, SOL SL100).
- Sourcemeter (Keithley 2401), programmable power supply HYELEC.
- Sample polishing machine (UNIPOL-300), microscope.
Laboratory supervisor: Dr. Patrik Ščajev
Nanophotonics Laboratory
Experimental techniques:
- photoluminescence spectroscopy with ~100 nm spatial resolution ensured by Scanning Near-field Optical Microscopy (SNOM) and enabling simultaneous measurement of surface morphology and spatial distribution of photoluminescence parameters;
- photoluminescence spectroscopy with submicrometer spatial resolution enabled by confocal microscopy;
- Atomic Force Microscopy (AFM).
Equipment:
Equipment is based on multifunctional microscopy system WITec Alpha 300 operating in three modes:
- Scanning Near-field Optical Microscope (SNOM);
- confocal microscope;
- Atomic Force Microscope (AFM).
Excitation sources:
- CW He-Cd laser (442 nm);
- CW laser diodes emitting at 405 and 660 nm.
Spectrometric eqipment:
- Spectrometer UTS-300 coupled with CCD camera (spectral range: 300-900 nm);
- Spectrometer SR-303 coupled with InGaAs CCD camera (spectral range: 800-2200 nm);
- Photomultiplier tube (spectral range: 185-850 nm);
- InGaAs detector module (1000-2050 nm).
Laboratory supervisor: Dr. Augustas Vaitkevičius
Liuminescence Spectroscopy Laboratory
Experimental techniques:
- photoluminescence spectroscopy under steady-state or quasi-steady-state excitation;
- photoluminescence spectroscopy with time resolution in nanosecond and microsecond domains;
- Raman spectroscopy.
Equipment:
Excitation sources:
- CW He-Cd laser (325 nm);
- Q-switched YAG:Nd laser with harmonics generators (available wavelength: 1064, 532, 355, 266, and 213 nm; pulse duration: 4 ns; maximal pulse energy: 250 mJ@1064 nm, 120 mJ@532 nm, 80 mJ@355 nm, 30 mJ@266 nm, 8 mJ@213 nm);
- Tunable-wavelength laser (spectral range: 210-2300 nm; pulse duration 4 ns; maximal pulse energy: up to 5 mJ@210-420 nm, up to 30 mJ@420-2300 nm).
Luminescence registration systems:
- High-contrast (12 orders of magnitude) double monochromator Jobin Yvon HRD-1 coupled with photomultiplier tube (spectral range: 160-930 nm);
- spectrometer SR-500 coupled with ICCD (spectral range: 180-850 nm, time resolution 2 ns);
- spectrometer SR-303 coupled with InGaAs CCD (spectral range: 800-2200 nm).
Accessories:
- Closed-cycle helium cryosystem (8-300 K);
- Laser power and energy meters;
- Fiber couplers to spectrometers.
Laboratory supervisor: Dr. Jūras Mickevičius
Photovoltaic Laboratory
Experimental techniques:
- investigation of functional properties of LEDs and solar simulators;
- characterization of photovoltaic cells by laser-beam-induced current technique.
Equipment:
Proprietary setup for investigation of functional properties of LEDs and solar simulators:
- programmable power supplies: up to 6 channels, up to 56 V, 4 A (TTi QL564TP).
- available sensors: Avantes AvaSpec 2048 spectrometer with a cosine corrector and fiber adapters, photodiodes, compact c-Si and a-Si solar cells;
- computer-controlled high-precision 2D stages (Standa 8MT195 and 8MT295) enabling irradiance and spectral irradiance measurements within an area of up to 300 × 300 mm2;
Proprietary setup for characterization of photovoltaic devices using laser-beam-induced current (LBIC) technique:
- high-precision 2D stages (Standa 8MT195 and 8MT295), which enable studying the area of up to 300 × 300 mm2 at 12.5 mm or larger step;
- illumination sources based on laser diodes.
Laboratory supervisor: Prof. Vincas Tamošiūnas
Laboratory of Numerical Simulation
Modeling techniques:
- modeling of nonequilibrium carrier dynamics using rate equations;
- modeling of the dynamics of a coupled system of free and localized nonequilibrium carrier dynamics using Monte Carlo simulations.
Modeling capabilities:
- temperature dependences of photoluminescence parameters: band peak energy, band width, emission efficiency;
- kinetics of photoluminescence and carrier density;
- internal quantum efficiency dependence on temperature and excitation power density;
- photoluminescence and carrier lifetime dependence on carrier energy.
Laboratory supervisor: Oleg Kravcov
Cathodoluminescence Laboratory
Experimental techniques
- Scanning electron microscopy (SEM) at nanometer-scale resolution
- Cathodoluminescence spectroscopy (CL) at nanometer-scale spatial resolution and picosecond-scale temporal resolution; CL imaging is performed simultaneously with SEM, thus enabling comparison of nanoscale luminescence features and surface morphology at perfectly matched conditions
Equipment
Lab equipment is based on hybrid optical and scanning electron microscope Attolight Chronos operating in CW and pulsed modes.
Specifications for electron gun module:
- Electron emission mechanism: Schottky thermal emission (in CW mode) and photovoltaic emission (in pulsed mode)
- Electron beam energy range — 1 kV to 10 kV (in CW mode); 3 kV to 10 kV (in pulsed mode)
- Electron beam spot size — 3 nm (in CW mode); 10 nm (in pulsed mode)
- Electron probe current — up to 300 nA (in CW mode); 50 pA (in pulsed mode)
- Electron pulse duration / frequency — 10 ps / 80 MHz
Specifications for cryogenically refrigerated sample positioning system:
- Control axes and their course — shift axes X, Y (25 mm), Z (3 mm); tilt axes Qx, Qy(3°); turn axis Qz (35°)
- Minimum shift step — 1 nm
- Range of sample cooling temperature — 10 K to 320 K
CL signal collection and detection system:
- Aplanatic lens with zero chromatic aberration and 300-mm spanning field of view
- Imaging spectrograph with three diffraction gratings suitable for different spectral ranges
- UV-VIS CCD detector (spectral range – 200-900 nm) with >900 spectra per second measurement speed
- UV-VIS Streak camera (spectral range – 200-900 nm) operating in synchroscan and single sweep synchronization modes
Laboratory supervisor: Dr. Žydrūnas Podlipskas
Projects
Ongoing:
Field-compensated InGaN structures as efficient cyan emitters
Number: S-MIP-22-82
Head: prof. R. Aleksiejūnas.
Duration: 2022-2025
Funding: 149 969EUR
Agency: Research Council of Lithuania
Completed:
Horizon 2020 programme ATTRACT project „Development of radiation-hard and cost-effective inorganic scintillators for calorimetric detectors based on binary glass compositions doped with cerium“ SCINTIGLAS
Head: prof. G. Tamulaitis.
Duration: 2019-2020
Funding: 10 000 EUR
Agency: EU H2020
Fast scintillators for radiation detectors
Number: 09.3.3-LMT-K-712-01-0013
Head: prof. G. Tamulaitis.
Duration: 2018-2022
Funding: 591 144 EUR
Agency: Research Council of Lithuania
Neutron flux detection system with optical readout
Number: 01.2.2-LMT-K-718-01-0041
Head: prof. G. Tamulaitis.
Duration: 2018-2022
Funding: 529 447 EUR
Agency: Research Council of Lithuania
Origins and pathways of non‐radiative recombination in nonpolar and semipolar InGaN structures
Number: MIP-17-75
Head: dr. S. Nargelas
Duration: 2017-2020
Funding: 100 000 EUR
Agency: Research Council of Lithuania
Towards Understanding and Modelling Intense Electronic Excitation (COST TUMIEE)
Number: COST activity CA-17126
Recipient: prof. G. Tamulaitis
Duration: 2014-2022
Funding: Travel expenses
Agency: EU H2020
Spectrally and Temporally Resolved Absorption and Photoluminescence Electro-optic Recorder
Number: Nr. S-MIP-19-34
Leader: P. Ščajev
Duration: 2019-2022
Funding: 149982 EUR
Agency: Research Council of Lithuania
GeSn-based photo sensor from basic research to application
Number: Nr. P-LLT-18-6
Leader: P. Ščajev
Duration: 2018-2020
Funding: 75000 USD
Agency: Lithuanian-Latvian-Taiwan mutual cooperation project
Local support from the Lithuanian Academy of Sciences for participation in activities of CERN Crystal Clear Collaboration (RD18)
Head: prof. G. Tamulaitis
Duration: 2019
Funding: 23 103 EUR
Agency: Lithuanian Academy of Sciences
AIDA 2020: Infrastructure for advanced calorimeters
Number: H2020-INFRAIA-2014-2015 project 654168, VU group activity WP 14
Head: prof. G. Tamulaitis
Duration: 2015-2019
Funding: 40 000 EUR
Agency: EU H2020
III-nitride semiconductors for radiation-hard infrared detectors
Number: LAT-16022
Head: prof. G. Tamulaitis.
Duration: 2016-2018
Funding: 299995 EUR
Agency: Research Council of Lithuania
Distinction of the influences of defects and carrier localization on emission in green InGaN LED structures
Number: MIP-079/2015
Head: dr. J. Mickevičius
Duration: 2015-2018
Funding: 99131 EUR
Agency: Research Council of Lithuania
COST: Fast Advanced Scintillator Timing
Number: COST TD1401
Head: prof. G. Tamulaitis.
Duration: 2014-2018
Development of Training Network for Improving Education in Energy Efficiency
Number: 530379-TEMPUS-1-2012-1-LV-TEMPUS-JPCR
Head: prof. G. Tamulaitis.
Duration: 2012-2015
Funding: 31100 EUR
Improvement of light emission in III-nitrides by boron introduction to increase lattice matching
Number: VP1-3.1-ŠMM-07-K-02-014
Head: prof. G. Tamulaitis.
Duration: 2012-2015
Funding: 376 744 EUR
Agency: Research Council of Lithuania
Enhancement of light emission efficiency in wide-band-gap nitride semiconductors
Number: MIP-054/2012, 2012-2014
Head: dr. J. Mickevičius
Duration: 2012-2014
Funding: 256500 EUR
Agency: Research Council of Lithuania
Publications
2021
J. Mickevičius, K. Nomeika, M. Dmukauskas, A. Kadys, S. Nargelas, R. Aleksiejūnas, „Comparison of growth interruption and temperature variation impact on emission efficiency in blue InGaN/GaN MQWs“, Vacuum, Vol. 183, p. 109871 (1-5), 2021
S. Nargelas, J. Mickevičius, A. Kadys, K. Jarašiūnas, T. Malinauskas, „Stimulated emission threshold in thick GaN epilayers: interplay between charge carrier and photon dynamics“, Optics and Laser Technology, Vol. 134, p. 106624 (1-6), 2021
D. Dobrovolskas, A. Kadys, A. Usikov, T. Malinauskas, K. Badokas, I. Ignatjev, S. Lebedev, A. Lebedev, Y. Makarov, G. Tamulaitis, „Luminescence of structured InN deposited on graphene interlayer“, Journal of Luminescence, Vol. 232, p. 117878 (1-7), 2021
S. Nargelas, G. Dosovitskiy, M. Korzhik, G. Tamulaitis, „Role of inter- and intraconfigurational transitions of Pr3+ ion in nonequilibrium carrier relaxation in garnet-type scintillators“, Optical Materials, Vol. 111, p. 110676 (1-6), 2021
P. Ščajev, V. Soriūtė, G. Kreiza, S. Nargelas, D. Dobrovolskas, T. Malinauskas, L. Subačius, P. Onufrijevs, S. Varnagiris, H-H. Chenge, “Temperature and spatial dependence of carrier lifetime and luminescence intensity in Ge0.95Sn0.05 layer”, Materials Science and Engineering: B, Vol. 270, p. 115204 (1-12), 2021
V. Dormenev, A. Amelina, E. Auffray, K.-T. Brinkmann, G. Dosovitskiy, F. Cova, A. Fedorov, S. Gundacker, D. Kazlou, M. Korjik, N. Kratochwil, V. Ladygin, V. Mechinsky, M. Moritz, S. Nargelas, R.W. Novotny, P. Orsich, M. Salomoni, Y. Talochka, G. Tamulaitis, A. Vaitkevičiu, A. Vedda, H.-G. Zaunick, “Multipurpose Ce-doped Ba-Gd silica glass scintillator for radiation measurement”, Nuclear Inst. and Methods in Physics Research A, Vol. 1015, p. 165762 (1-10) 2021
O. Kravcov, J. Mickevičius, and G. Tamulaitis, „Origin of thermal quenching of exciton photoluminescence in AlGaN epilayers“, Lithuanian Journal of Physics Vol. 61, No. 2, p. 84-90, 2021
S. Nargelas, G. Tamulaitis, and CMS MTD Collaboration, „Test beam characterization of sensor prototypes for the CMS Barrel MIP Timing Detector“, Journal of Instrumentation Vol. 16, p. P07023, 2021
S. Nargelas, Y. Talochka, A. Vaitkevičius, G. Dosovitskiy, O. Buzanov, A. Vasil'ev, T. Malinauskas, M. Korzhik, G. Tamulaitis, „Influence of matrix composition and its fluctuations on excitation relaxation and emission spectrum of Ce ions in (Gdx Y1-x)3Al2Ga3O12:Ce scintillators“, Journal of Luminescence, p. 118590, 2021.
P. Ščajev, P. Onufrijevs, A. Mekys, T. Malinauskas, D. Augulis, L. Subačius, K-Ch. Lee, J. Kaupuzs, S.Varnagiris, A. Medvids, H-Hs. Cheng, „Extension of spectral sensitivity of GeSn IR photodiode after laser annealing“, Applied Surface Science Vol. 555, p. 149711 (1-8), 2021
P. Ščajev, R. Durena, P. Onufrijevs, S. Miasojedovas, T. Malinauskas, S. Stanionytė, A. Zarkov, A. Zukuls, I. Bite, K. Smits, „Morphological and optical property study of Li doped ZnO produced by microwave-assisted solvothermal synthesis“, Materials Science in Semiconductor Processing Vol. 135, p. 106069 (1-8), 2021
G. Dosovitskiy, V. Dubov, P. Karpyuk, P. Volkov, G. Tamulaitis, A. Borisevich, A. Vaitkevičius, K. Prikhodko, L. Kutuzov, R. Svetogorov, A. Veligzhanin, M. Korzhik, „Activator segregation and micro-luminescence properties in GAGG: Ce ceramics“, Journal of Luminescence Vol. 236, p. 118140 (1-8), 2021
G. Dosovitskiy, A. Golutivin, I. Guz, R. Jacobsson, M. Korzhik, V. Mechinsky, Y. Talochka, G. Tamulaitis, A. Schopper, E. Shmanin, „Time and energy resolution with SPACAL type modules made of high-light-yield Ce-doped inorganic scintillation materials: Spillover and background noise effects“, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Vol. 999, p. 165169 (1-10), 2021
P. Ščajev, “Time-resolved photoluminescence and xenon differential transmission measurement device based on electro-optic deflector”, Optical Components and Materials XVIII (2021) – SPIE Vol. 11682, p. 1168205 (1-6), 2021
2020
M. Korzhik, G. Tamulaitis, A. Vasil'ev, Physics of Fast Processes in Scintillators, Springer, 262 pages, 2020, ISBN-13: 978-3-030-21965-9, ISBN-10: 3030219658.
O. Kravcov, J. Mickevičius and G. Tamulaitis, “Kinetic Monte Carlo simulations of the dynamics of a coupled system of free and localized carriers in AlGaN”, Journal of Physics: Condensed Matter, Vol. 32, p. 145901 (8p), 2020.
G. Tamulaitis, E. Auffray, A. Gola, M. Korzhik, A. Mazzi, V. Mechinski, S. Nargelas, Y. Talochka, A. Vaitkevičius, A. Vasil'ev, “Improvement of the timing properties of Ce-doped oxyorthosilicate LYSO scintillating crystals”, Journal of Physics and Chemistry of Solids, Vol. 139, p. 109256 (1-11), 2020.
D. Kuciauskas, J. Moseley, P. Ščajev, and D. Albin, “Radiative Efficiency and Charge-Carrier Lifetimes and Diffusion Length in Polycrystalline CdSeTe Heterostructures”, physica status solidi – Rapid Research Letters, Vol. 14, p. 1900606, 2020.
J. Pavlov, T. Čeponis, L. Deveikis, V. Rumbauskas, G. Tamulaitis, E. Gaubas, “Modification of characteristics of AlGaN photodiodes by 1.6 MeV proton irradiation”, Journal of Instrumentation, Vol. 15, p. C01026 (1-9), 2020.
P. Onufrijevsa, P. Ščajev, A. Medvids, M. Andrulevičius, S. Nargelas, T. Malinauskas, S. Stanionytė, M. Skapas, L. Grase, A. Pludons, M. Oehme, K. Lyutovich, E. Kasper, J. Schulze, H. H. Chengg, “Direct-indirect GeSn band structure formation by laser Radiation: The enhancement of Sn solubility in Ge”, Optics and Laser Technology, Vol. 128, p. 106200 (1-7), 2020.
K.Ch. Lee, M.X. Lin, H. Li, H.H. Cheng, G. Sun, R. Soref, J. R. Hendrickson, K.M. Hung, P. Ščajev, and A. Medvids, “Planar GeSn photodiode for high-detectivity photodetection at 1550 nm”, Applied Physics Letters, Vol. 117, p. 012102 (1-5), 2020.
P. Grivickas, P. Ščajev, N. Kazuchits, A. Mazanik, O. Korolik, L. F. Voss, A. M. Conway, D. Hall, M. Bora, L. Subačius, V. Bikbajevas, and V. Grivickas, “Carrier recombination parameters in diamond after surface boron implantation and annealing”, Journal of Applied Physics, Vol. 127, 245707 (1-6), 2020.
P. Ščajev, K. Jarašiūnas, and J. Leach, “Carrier recombination processes in Fe-doped GaN studied by optical pump–probe techniques”, Journal of Applied Physics, Vol. 127, p. 245705 (1-9), 2020.
S. Miasojedovas, P. Ščajev, K. Jarašiūnas, B. Gil, and H. Miyake, “Photoluminescence efficiency of Al-rich AlGaN heterostructures in a wide range of photoexcitation densities over temperatures up to 550 K”, Physical Review B, Vol. 102, p. 035201 (1-14), 2020.
M. Schreck, P. Ščajev, M. Träger, M. Mayr, T. Grünwald, M. Fischer, and S. Gsell, “Charge carrier trapping by dislocations in single crystal diamond”, Journal of Applied Physics Vol. 127, p. 125102 (1-16), 2020.
D.L. Hall, L.F. Voss, P. Grivickas, M. Bora, A.M. Conway, P. Ščajev, and V. Grivickas, “Photoconductive Switch With High Sub-Bandgap Responsivity in Nitrogen-Doped Diamond”, IEEE Electron Device Letters, Vol. 41, p. 1070-1073, 2020.
S. Rasool, P. Ščajev, K. Saritha, I. Svito, K. T. Ramakrishna Reddy, M.S. Tivanov, V. Grivickas, „Determination of carrier lifetime in thermally evaporated In2S3 thin films by light induced transient grating technique“, Applied Physics A, Vol. 126, p. 312 (1-6), 2020.
P. Ščajev, S. Miasojedovas, S. Juršėnas, “A carrier density dependent diffusion coefficient, recombination rate and diffusion length in MAPbI(3)and MAPbBr(3)crystals measured under one- and two-photon excitations”, Journal of Materials Chemistry C, Vol. 8, p. 10290-10301, 2020.
R. Aleksiejūnas, K. Nomeika, O. Kravcov, S. Nargelas, L. Kuritzky, Ch. Lynsky, Sh. Nakamura, C. Weisbuch, and J.S. Speck, „Impact of alloy disorder induced localization on hole diffusion in highly excited c-plane and m-plane InGaN quantum wells“, Physical Review Applied, Vol. 14, p. 054043 (1-11), 2020.
2019
Ž. Podlipskas, J. Jurkevičius, A. Kadys, M. Kolenda, V. Kovalevskij, D. Dobrovolskas, R. Aleksiejūnas, G. Tamulaitis, Extreme radiation resistance in InN, J. Alloys Compd. 789 (2019) 48–55. doi:10.1016/J.JALLCOM.2019.03.108.
D. Dobrovolskas, S. Arakawa, S. Mouri, T. Araki, Y. Nanishi, J. Mickevičius, G. Tamulaitis, Enhancement of InN Luminescence by Introduction of Graphene Interlayer, Nanomaterials. 9 (2019) 417. doi:10.3390/nano9030417.
M. Korzhik, A. Gola, J. Houžvička, A. Mazzi, S. Nargelas, S. Sýkorová, G. Tamulaitis, A. Vaitkevičius, Timing properties of Ce-doped YAP and LuYAP scintillation crystals, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 927 (2019) 169–173. doi:10.1016/j.nima.2019.02.036.
Y. Tratsiak, Y. Bokshits, M. Korjik, G. Tamulaitis, E. Trusova, A. Vaitkevičius, Garnet-based complex substituted glass ceramic materials, Radiat. Meas. 122 (2019) 97–100. doi:10.1016/j.radmeas.2019.02.005.
Y. Tratsiak, E. Trusova, Y. Bokshits, M. Korjik, A. Vaitkevičius, G. Tamulaitis, Garnet-type crystallites, their isomorphism and luminescence properties in glass ceramics, CrystEngComm. 21 (2019) 687–693. doi:10.1039/C8CE01547C.
R. Norkus, R. Aleksiejūnas, A. Kadys, M. Kolenda, G. Tamulaitis, A. Krotkus, Spectral dependence of THz emission from InN and InGaN layers, Sci. Rep. 9 (2019) 7077. doi:10.1038/s41598-019-43642-4.
P. Ščajev, R. Aleksiejūnas, S. Terakawa, C. Qin, T. Fujihara, T. Matsushima, C. Adachi, S. Juršenas, Anisotropy of thermal diffusivity in lead halide perovskite layers revealed by thermal grating technique, J. Phys. Chem. C. 123 (2019) 14914–14920. doi:10.1021/acs.jpcc.9b02288.
P. Ščajev, R. Aleksiejūnas, P. Baronas, D. Litvinas, M. Kolenda, C. Qin, T. Fujihara, T. Matsushima, C. Adachi, S. Juršėnas, Carrier Recombination and Diffusion in Wet-Cast Tin Iodide Perovskite Layers Under High Intensity Photoexcitation, J. Phys. Chem. C. 123 (2019) 19275–19281. doi:10.1021/acs.jpcc.9b03226.
E. Gaubas, P. Baronas, T. Čeponis, L. Deveikis, D. Dobrovolskas, E. Kuokstis, J. Mickevičius, V. Rumbauskas, M. Bockowski, M. Iwinska, T. Sochacki, Study of spectral and recombination characteristics of HVPE GaN grown on ammono substrates, Mater. Sci. Semicond. Process. 91 (2019) 341–355. doi:10.1016/J.MSSP.2018.12.010.
D. Dobrovolskas, G. Tamulaitis, E. Gaubas, M. Korjik, GAGG:Ce scintillation fibers for high energy physics applications, J. Instrum. 14 (2019) P06031–P06031. doi:10.1088/1748-0221/14/06/P06031.
J. Mickevičius, D. Dobrovolskas, T. Malinauskas, M. Kolenda, A. Kadys, G. Tamulaitis, Improvement of luminescence properties of InN by optimization of multi-step deposition on sapphire, Thin Solid Films. 680 (2019) 89–93. doi:10.1016/J.TSF.2019.04.032.
P. Scajev, D. Litvinas, V. Soriūtė, G. Kreiza, S. Stanionytė, S. Jursenas, Crystal Structure Ideality Impact to Bimolecular, Auger and Diffusion Coefficients in Mixed Cation Cs x MA 1-x PbBr 3 and Cs x FA 1-x PbBr 3 Perovskites, J. Phys. Chem. C. (2019) acs.jpcc.9b05824. doi:10.1021/acs.jpcc.9b05824.
P. Ščajev, L. Subačius, K. Jarašiūnas, M. Kato, Recombination and diffusion processes in electronic grade 4H silicon carbide, Lith. J. Phys. 59 (2019). doi:10.3952/physics.v59i1.3938.
V. Grivickas, P. Ščajev, V. Bikbajevas, O. V. Korolik, A. V. Mazanik, Carrier dynamics in highly excited TlInS 2 : evidence of 2D electron–hole charge separation at parallel layers, Phys. Chem. Chem. Phys. 21 (2019) 2102–2114. doi:10.1039/C8CP06209A.
P. Ščajev, S. Miasojedovas, L. Subačius, K. Jarašiūnas, A. V. Mazanik, O. V. Korolik, M. Kato, Impact of intrinsic defects on excitation dependent carrier lifetime in thick 4H-SiC studied by complementing microwave photoconductivity, free-carrier absorption and time-resolved photoluminescence techniques, J. Lumin. 212 (2019) 92–98. doi:10.1016/J.JLUMIN.2019.04.018.
P. Ščajev, D. Litvinas, G. Kreiza, S. Stanionytė, T. Malinauskas, R. Tomašiūnas, S. Juršėnas, Highly efficient nanocrystalline Cs x MA 1−x PbBr x perovskite layers for white light generation, Nanotechnology. 30 (2019) 345702. doi:10.1088/1361-6528/ab1a69.
E. Auffray, G. Dosovitskiy, A. Fedorov, I. Guz, M. Korjik, N. Kratochwill, M. Lucchini, S. Nargelas, D. Kozlov, V. Mechinsky, P. Orsich, O. Sidletskiy, G. Tamulaitis, A. Vaitkevičius, Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments, Radiation Physics and Chemistry, 164, 108365 (2019).
G. Tamulaitis, A. Vasil’ev, M. Korzhik, A. Mazzi, A. Gola , S. Nargelas, A. Vaitkevičius , A. Fedorov, and D. Kozlov, Improvement of the Time Resolution of Radiation Detectors Based on Gd3Al2Ga3O12 Scintillators with SiPM Readout, IEEE Trans. Nucl. Sci. 66, 1879 (2019).
T. Ceponis, K. Badokas, L. Deveikis, J. Pavlov, V. Rumbauskas, V. Kovalevskij, S. Stanionyte, G. Tamulaitis, E. Gaubas, Evolution of Scintillation and Electrical Characteristics of AlGaN Double‐Response Sensors During Proton Irradiation, Sensors, 19, 3388 (2019); doi:10.3390/s19153388.
J.Mickevičius, M.Andrulevicius, O.Ligor, A.Kadys, R.Tomašiūnas, G.Tamulaitis, and E.-M.Pavelescu, Type-II band alignment of low-boron-content BGaN/GaN heterostructures, Journal of Physics D: Applied Physics 52, 325105 (2019).
A. Mekys, J. Jurkevičius, A. Kadys, M. Kolenda, V. Kovalevskij, G. Tamulaitis, Influence of proton irradiation on carrier mobility in InN epitaxial layers, Thin Solid Films, 692, 137619 (2019).
D. Dobrovolskas, G. Tamulaitis, E. Gaubas, M. Korjik, GAGG:Ce scintillation fibers for high energy physics applications, J. Instrumentation, 14, P06031 (2019).
J. Pavlov, T. Ceponis, L. Deveikis, T. Heikkinen, J. Raisanen, V. Rumbauskas, G. Tamulaitis, F. Tuomisto, E. Gaubas, Spectroscopy of defects in neutron irradiated ammono-thermal GaN by combining photoionization, photoluminescence and positron annihilation techniques, Lith. J. Phys. 59, 211-223 (2019).
2018
M.E. Kazyrevich, E.A. Streltsov, М.V. Malashchonak, A.V. Mazanik, A.I. Kulak, P. Ščajev, V. Grivickas, Crystal stacking: A route to control photoelectrochemical behavior of BiOBr films, Electrochim. Acta. 290 (2018) 63–71. doi:10.1016/J.ELECTACTA.2018.09.019.
E.A. Bondarenko, E.A. Streltsov, A. V. Mazanik, A.I. Kulak, V. Grivickas, P. Ščajev, E. V. Skorb, Bismuth oxysulfide film electrodes with giant incident photon-to-current conversion efficiency: the dynamics of properties with deposition time, Phys. Chem. Chem. Phys. 20 (2018) 20340–20346. doi:10.1039/C8CP03225D.
P. Baronas, P. Ščajev, V. Čerkasovas, G. Kreiza, P. Adomėnas, O. Adomėnienė, K. Kazlauskas, C. Adachi, S. Juršėnas, Exciton diffusion in bifluorene single crystals studied by light induced transient grating technique, Appl. Phys. Lett. 112 (2018) 033302. doi:10.1063/1.5008376.
P. Ščajev, S. Miasojedovas, A. Mekys, D. Kuciauskas, K.G. Lynn, S.K. Swain, K. Jarašiūnas, Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques, J. Appl. Phys. 123 (2018) 025704. doi:10.1063/1.5010780.
J. Mickevičius, D. Dobrovolskas, J. Aleknavičius, T. Grinys, A. Kadys, G. Tamulaitis, Spatial redistribution of photoexcited carriers in InGaN/GaN structures emitting in a wide spectral range, J. Lumin. 199 (2018) 379–383. doi:10.1016/J.JLUMIN.2018.03.078.
E. Gaubas, T. Ceponis, J. Mickevicius, J. Pavlov, V. Rumbauskas, M. Velicka, E. Simoen, M. Zhao, Pulsed photo-ionization spectroscopy in carbon doped MOCVD GaN epi-layers on Si, Semicond. Sci. Technol. 33 (2018) 075015. doi:10.1088/1361-6641/aaca78.
E. Gaubas, T. Čeponis, D. Dobrovolskas, J. Mickevičius, J. Pavlov, V. Rumbauskas, J.V. Vaitkus, N. Alimov, S. Otajonov, Study of polycrystalline CdTe films by contact and contactless pulsed photo-ionization spectroscopy, Thin Solid Films. 660 (2018) 231–235. doi:10.1016/J.TSF.2018.06.016.
G. Tamulatis, G. Dosovitskiy, A. Gola, M. Korjik, A. Mazzi, S. Nargelas, P. Sokolov, A. Vaitkevičius, Improvement of response time in GAGG:Ce scintillation crystals by magnesium codoping, J. Appl. Phys. 124 (2018) 215907. doi:10.1063/1.5064434.
E. Trusova, A. Vaitkevičius, Y. Tratsiak, M. Korjik, P. Mengucci, D. Rinaldi, L. Montalto, V. Marciulionyte, G. Tamulaitis, Barium and lithium silicate glass ceramics doped with rare earth ions for white LEDs, Opt. Mater. (Amst). 84 (2018) 459–465. doi:10.1016/j.optmat.2018.07.030.
P. Ščajev, C. Qin, R. Aleksieju̅nas, P. Baronas, S. Miasojedovas, T. Fujihara, T. Matsushima, C. Adachi, S. Juršėnas, Diffusion Enhancement in Highly Excited MAPbI 3 Perovskite Layers with Additives, J. Phys. Chem. Lett. 9 (2018) 3167–3172. doi:10.1021/acs.jpclett.8b01155.
V. Svrcek, M. Kolenda, A. Kadys, I. Reklaitis, D. Dobrovolskas, T. Malinauskas, M. Lozach, D. Mariotti, M. Strassburg, R. Tomašiūnas, Significant Carrier Extraction Enhancement at the Interface of an InN/p-GaN Heterojunction under Reverse Bias Voltage, Nanomaterials. 8 (2018) 1039. doi:10.3390/nano8121039.
J. Mickevičius, T. Grinys, A. Kadys, G. Tamulaitis, Optimization of growing green-emitting InGaN/GaN multiple quantum wells on stress-relieving superlattices, Opt. Mater. (Amst). 82 (2018) 71–74. doi:10.1016/J.OPTMAT.2018.05.047.
J. Aleknavičius, E. Pozingytė, R. Butkutė, A. Krotkus, G. Tamulaitis, Influence of laser irradiation on optical properties of GaAsBi/GaAs quantum wells, Lith. J. Phys. 58 (2018). doi:10.3952/physics.v58i1.3656.
R. Aleksiejūnas, Ž. Podlipskas, S. Nargelas, A. Kadys, M. Kolenda, K. Nomeika, J. Mickevičius, G. Tamulaitis, Direct Auger recombination and density-dependent hole diffusion in InN, Sci. Rep. 8 (2018) 4621. doi:10.1038/s41598-018-22832-6.
J. Mickevičius, D. Dobrovolskas, T. Steponavičius, T. Malinauskas, M. Kolenda, A. Kadys, G. Tamulaitis, Engineering of InN epilayers by repeated deposition of ultrathin layers in pulsed MOCVD growth, Appl. Surf. Sci. 427 (2018) 1027–1032. doi:10.1016/J.APSUSC.2017.09.074.
E. Auffray, R. Augulis, A. Fedorov, G. Dosovitskiy, L. Grigorjeva, V. Gulbinas, M. Koschan, M. Lucchini, C. Melcher, S. Nargelas, G. Tamulaitis, A. Vaitkevičius, A. Zolotarjovs, M. Korzhik, Excitation Transfer Engineering in Ce-Doped Oxide Crystalline Scintillators by Codoping with Alkali-Earth Ions, Phys. Status Solidi. 215 (2018) 1700798. doi:10.1002/pssa.201700798.
M.T. Lucchini, O. Buganov, E. Auffray, P. Bohacek, M. Korjik, D. Kozlov, S. Nargelas, M. Nikl, S. Tikhomirov, G. Tamulaitis, A. Vaitkevicius, K. Kamada, A. Yoshikawa, Measurement of non-equilibrium carriers dynamics in Ce-doped YAG, LuAG and GAGG crystals with and without Mg-codoping, J. Lumin. 194 (2018) 1–7. doi:10.1016/J.JLUMIN.2017.10.005.
2017
M. Korjik, V. Alenkov, A. Borisevich, O. Buzanov, V. Dormenev, G. Dosovitskiy, A. Dosovitskiy, A. Fedorov, D. Kozlov, V. Mechinsky, R.W. Novotny, G. Tamulaitis, V. Vasiliev, H.-G. Zaunick, A.A. Vaitkevičius, Significant improvement of GAGG:Ce based scintillation detector performance with temperature decrease, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 871 (2017) 42–46. doi:10.1016/J.NIMA.2017.07.045.
G. Tamulaitis, A. Vaitkevičius, S. Nargelas, R. Augulis, V. Gulbinas, P. Bohacek, M. Nikl, A. Borisevich, A. Fedorov, M. Korjik, E. Auffray, Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 870 (2017) 25–29. doi:10.1016/J.NIMA.2017.07.015.
Y. Tratsiak, Y. Bokshits, A. Borisevich, M. Korjik, A. Vaitkevičius, G. Tamulaitis, Y2CaAlGe(AlO4)3:Ce and Y2MgAlGe(AlO4)3:Ce garnet phosphors for white LEDs, Opt. Mater. (Amst). 67 (2017) 108–112. doi:10.1016/J.OPTMAT.2017.03.047.
P. Ščajev, Excitation and temperature dependent exciton-carrier transport in CVD diamond: Diffusion coefficient, recombination lifetime and diffusion length, Phys. B Condens. Matter. 510 (2017) 92–98. doi:10.1016/j.physb.2017.01.021.
L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, M.M.C. Chou, L. Chang, C.-A. Li, Luminescence properties of LiGaO2 crystal, Opt. Mater. (Amst). 69 (2017) 449–459. doi:10.1016/J.OPTMAT.2016.11.012.
E. Gaubas, T. Ceponis, D. Dobrovolskas, T. Malinauskas, D. Meskauskaite, S. Miasojedovas, J. Mickevicius, J. Pavlov, V. Rumbauskas, E. Simoen, M. Zhao, Study of recombination characteristics in MOCVD grown GaN epi-layers on Si, Semicond. Sci. Technol. 32 (2017) 125014. doi:10.1088/1361-6641/aa96e8.
E. Gaubas, T. Ceponis, L. Deveikis, D. Meskauskaite, S. Miasojedovas, J. Mickevicius, J. Pavlov, K. Pukas, J. Vaitkus, M. Velicka, M. Zajac, R. Kucharski, Study of neutron irradiated structures of ammonothermal GaN, J. Phys. D. Appl. Phys. 50 (2017) 135102. doi:10.1088/1361-6463/AA5C6C.
P. Ščajev, R. Aleksieju̅nas, S. Miasojedovas, S. Nargelas, M. Inoue, C. Qin, T. Matsushima, C. Adachi, S. Juršėnas, Two Regimes of Carrier Diffusion in Vapor-Deposited Lead-Halide Perovskites, J. Phys. Chem. C. 121 (2017) 21600–21609. doi:10.1021/acs.jpcc.7b04179.
K. Nomeika, R. Aleksiejūnas, S. Miasojedovas, R. Tomašiūnas, K. Jarašiūnas, I. Pietzonka, M. Strassburg, H.-J. Lugauer, Impact of carrier localization and diffusion on photoluminescence in highly excited cyan and green InGaN LED structures, J. Lumin. 188 (2017) 301–306. doi:10.1016/J.JLUMIN.2017.04.055.
D. Dobrovolskas, J. Mickevičius, S. Nargelas, A. Vaitkevičius, Y. Nanishi, T. Araki, G. Tamulaitis, Influence of defects and indium distribution on emission properties of thick In-rich InGaN layers grown by the DERI technique, Semicond. Sci. Technol. 32 (2017) 025012. doi:10.1088/1361-6641/32/2/025012.
J. Mickevičius, D. Dobrovolskas, R. Aleksiejūnas, K. Nomeika, T. Grinys, A. Kadys, G. Tamulaitis, Influence of growth temperature on carrier localization in InGaN/GaN MQWs with strongly redshifted emission band, J. Cryst. Growth. 459 (2017) 173–177. doi:10.1016/J.JCRYSGRO.2016.12.008.
2016
E. Auffray, M. Korjik, M.T. Lucchini, S. Nargelas, O. Sidletskiy, G. Tamulaitis, Y. Tratsiak, A. Vaitkevičius, Free carrier absorption in self-activated PbWO4 and Ce-doped Y3(Al0.25Ga0.75)3O12 and Gd3Al2Ga3O12 garnet scintillators, Opt. Mater. (Amst). 58 (2016) 461–465. doi:10.1016/J.OPTMAT.2016.06.040.
K. Nomeika, M. Dmukauskas, R. Aleksiejūnas, P. Ščajev, S. Miasojedovas, A. Kadys, S. Nargelas, K. Jarašiūnas, Enhancement of quantum efficiency in InGaN quantum wells by using superlattice interlayers and pulsed growth, Lith. J. Phys. 55 (2016). doi:10.3952/physics.v55i4.3221.
M. V. Korjik, E. Auffray, O. Buganov, A.A. Fedorov, I. Emelianchik, E. Griesmayer, V. Mechinsky, S. Nargelas, O. Sidletskiy, G. Tamulaitis, S.N. Tikhomirov, A. Vaitkevicius, Non-Linear Optical Phenomena in Detecting Materials as a Possibility for Fast Timing in Detectors of Ionizing Radiation, IEEE Trans. Nucl. Sci. 63 (2016) 2979–2984. doi:10.1109/TNS.2016.2617461.
P. Onufrijevs, P. Ščajev, K. Jarašiūnas, A. Medvid, V. Korsaks, N. Mironova-Ulmane, M. Zubkins, H. Mimura, Photo-electrical and transport properties of hydrothermal ZnO, J. Appl. Phys. 119 (2016) 135705. doi:10.1063/1.4945016.
P. Ščajev, T. Malinauskas, G. Seniutinas, M.D. Arnold, A. Gentle, I. Aharonovich, G. Gervinskas, P. Michaux, J.S. Hartley, E.L.H. Mayes, P.R. Stoddart, S. Juodkazis, Light-induced reflectivity transients in black-Si nanoneedles, Sol. Energy Mater. Sol. Cells. 144 (2016) 221–227. doi:10.1016/J.SOLMAT.2015.08.030.
E. Auffray, R. Augulis, A. Borisevich, V. Gulbinas, A. Fedorov, M. Korjik, M.T. Lucchini, V. Mechinsky, S. Nargelas, E. Songaila, G. Tamulaitis, A. Vaitkevičius, S. Zazubovich, Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals, J. Lumin. 178 (2016) 54–60. doi:10.1016/J.JLUMIN.2016.05.015.
A. Baguckis, A. Novickovas, A. Mekys, V. Tamošiunas, Compact hybrid solar simulator with the spectral match beyond class A, J. Photonics Energy. 6 (2016) 035501. doi:10.1117/1.JPE.6.035501.
J. Mickevičius, J. Jurkevičius, A. Kadys, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, R. Gaska, Temperature-dependent efficiency droop in AlGaN epitaxial layers and quantum wells, AIP Adv. 6 (2016) 045212. doi:10.1063/1.4947574.
J. Jurkevičius, J. Mickevičius, A. Kadys, M. Kolenda, G. Tamulaitis, Photoluminescence efficiency of BGaN epitaxial layers with high boron content, Phys. B Condens. Matter. 492 (2016) 23–26. doi:10.1016/J.PHYSB.2016.03.033.
Ž. Podlipskas, R. Aleksiejūnas, S. Nargelas, J. Jurkevičius, J. Mickevičius, A. Kadys, G. Tamulaitis, M.S. Shur, M. Shatalov, J. Yang, R. Gaska, Photomodification of carrier lifetime and diffusivity in AlGaN epitaxial layers, Curr. Appl. Phys. 16 (2016) 633–637. doi:10.1016/J.CAP.2016.03.010.
Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, R. Gaska, Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers, J. Phys. D. Appl. Phys. 49 (2016) 145110. doi:10.1088/0022-3727/49/14/145110.
2015
L. Subačius, K. Jarašiūnas, P. Ščajev, M. Kato, Development of a microwave photoconductance measurement technique for the study of carrier dynamics in highly-excited 4H-SiC, Meas. Sci. Technol. 26 (2015) 125014. doi:10.1088/0957-0233/26/12/125014.
P. Ščajev, J. Jurkevičius, J. Mickevičius, K. Jarašiūnas, H. Kato, Features of free carrier and exciton recombination, diffusion, and photoluminescence in undoped and phosphorus-doped diamond layers, Diam. Relat. Mater. 57 (2015) 9–16. doi:10.1016/J.DIAMOND.2015.02.003.
P. Ščajev, S. Miasojedovas, K. Jarašiunas, K. Hiramatsu, H. Miyake, B. Gil, Excitation-dependent carrier dynamics in Al-rich AlGaN layers and multiple quantum wells, Phys. Status Solidi. 252 (2015) 1043–1049. doi:10.1002/pssb.201451479.
A. Kadys, T. Malinauskas, T. Grinys, M. Dmukauskas, J. Mickevičius, J. Aleknavičius, R. Tomašiūnas, A. Selskis, R. Kondrotas, S. Stanionytė, H. Lugauer, M. Strassburg, Growth of InN and In-Rich InGaN Layers on GaN Templates by Pulsed Metalorganic Chemical Vapor Deposition, J. Electron. Mater. 44 (2015) 188–193. doi:10.1007/s11664-014-3494-6.
R. Aleksiejūnas, K. Nomeika, S. Miasojedovas, S. Nargelas, T. Malinauskas, K. Jarašiūnas, Ö. Tuna, M. Heuken, Carrier dynamics in blue and green emitting InGaN MQWs, Phys. Status Solidi. 252 (2015) 977–982. doi:10.1002/pssb.201451583.
A. Novickovas, A. Baguckis, A. Mekys, V. Tamosiunas, Compact Light-Emitting Diode-Based AAA Class Solar Simulator: Design and Application Peculiarities, IEEE J. Photovoltaics. 5 (2015) 1137–1142. doi:10.1109/JPHOTOV.2015.2430013.
E. Auffray, O. Buganov, M. Korjik, A. Fedorov, S. Nargelas, G. Tamulaitis, S. Tikhomirov, A. Vaitkevičius, Application of two-photon absorption in PWO scintillator for fast timing of interaction with ionizing radiation, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 804 (2015) 194–200. doi:10.1016/J.NIMA.2015.09.017.
J. Mickevičius, Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Jurkevičius, G. Tamulaitis, M.S. Shur, M. Shatalov, J. Yang, R. Gaska, Nonradiative Recombination, Carrier Localization, and Emission Efficiency of AlGaN Epilayers with Different Al Content, J. Electron. Mater. 44 (2015) 4706–4709. doi:10.1007/s11664-015-4132-7.
T. Saxena, S. Nargelas, J. Mickevičius, O. Kravcov, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, R. Gaska, Spectral dependence of carrier lifetime in high aluminum content AlGaN epitaxial layers, J. Appl. Phys. 118 (2015) 085705. doi:10.1063/1.4929499.
M.V. Korjik, A. Vaitkevicius, D. Dobrovolskas, E.V. Tret’yak, E. Trusova, G. Tamulaitis, Distribution of luminescent centers in Ce3+-ion doped amorphous stoichiometric glass BaO–2SiO2 and dedicated glass ceramics, Opt. Mater. (Amst). 47 (2015) 129–134. doi:10.1016/J.OPTMAT.2015.07.014.
T. Saxena, M. Shur, S. Nargelas, Ž. Podlipskas, R. Aleksiejūnas, G. Tamulaitis, M. Shatalov, J. Yang, R. Gaska, Dynamics of nonequilibrium carrier decay in AlGaN epitaxial layers with high aluminum content, Opt. Express. 23 (2015) 19646. doi:10.1364/OE.23.019646.
J. Mickevičius, J. Jurkevičius, A. Kadys, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, R. Gaska, Low-temperature redistribution of non-thermalized carriers and its effect on efficiency droop in AlGaN epilayers, J. Phys. D. Appl. Phys. 48 (2015) 275105. doi:10.1088/0022-3727/48/27/275105.
J. Mickevičius, G. Tamulaitis, J. Jurkevičius, M.S. Shur, M. Shatalov, J. Yang, R. Gaska, Efficiency droop and carrier transport in AlGaN epilayers and heterostructures, Phys. Status Solidi. 252 (2015) 961–964. doi:10.1002/pssb.201451542.
V. Kononets, O. Benamara, G. Patton, C. Dujardin, S. Gridin, A. Belsky, D. Dobrovolskas, A. Vaitkevičius, G. Tamulaitis, V. Baumer, K. Belikov, O. Sidletskiy, K. Lebbou, Growth of Ce-doped LGSO fiber-shaped crystals by the micro pulling down technique, J. Cryst. Growth. 412 (2015) 95–102. doi:10.1016/J.JCRYSGRO.2014.11.036.